Answer:
375 m.
Explanation:
From the question,
Work done by the frictional force = Kinetic energy of the object
F×d = 1/2m(v²-u²)..................... Equation 1
Where F = Force of friction, d = distance it slide before coming to rest, m = mass of the object, u = initial speed of the object, v = final speed of the object.
Make d the subject of the equation.
d = 1/2m(v²-u²)/F.................. Equation 2
Given: m = 60.0 kg, v = 0 m/s(coming to rest), u = 25 m/s, F = -50 N.
Note: If is negative because it tends to oppose the motion of the object.
Substitute into equation 2
d = 1/2(60)(0²-25²)/-50
d = 30(-625)/-50
d = -18750/-50
d = 375 m.
Hence the it will slide before coming to rest = 375 m
The answer to this question is force
Moment about the pivot must be equal for the seesaw to balance. Initially, the first cat and the bowl are at 2 m from the pivot.
The moment due to cat = 5.3*2 = 10.6 kg.m
The moment due to bowl = 2.5*2 = 5 kg.m
The unbalanced moment = 10.6 - 5 = 5.6 kg.m
Therefore, the 3.7 kg cat should stand at a distance x from the pivot in left to balance the 5.6 kg.m.
That is,
3.7*x = 5.6 => x = 5.6/3.7 = 1.5134 m to the left (on the side of the bowl)
Answer:
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m.
Explanation:
The Coulomb force between two charges,
and
, separated by a distance,
, is given

<em>k</em> is a constant.
For the charge Z to be at equilibrium, the force exerted on it by charge X must be equal and opposite to the force exerted on it by charge Y.
It is to be placed along the <em>x</em>-axis. Hence, it is on the same line as charges X and Y.
Let the charge on Z be <em>Q</em>. It is positive.
Let the distance from charge X be <em>x m.</em> Then the distance from charge Y will be (0.60 - <em>x</em>) m.
Force due to charge X

Force due to charge Y

Since both forces are equal and opposite,







Applying the quadratic formula,

or 
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m
Answer:
24kgm/s
Explanation:
Given parameters:
Force = 80N
Mass of object = 6kg
Initial velocity = 4m/s
Final velocity = 8m/s
Solution:
Impulse = ?
Solution:
The impulse on a body is its change in momentum.
Impulse = m (v - u )
m is the mass
v is the final velocity
u is the initial velocity
Now insert the parameters and solve;
Impulse = 6 (8 - 4) = 24kgm/s