Answer:


Explanation:
Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.
At any distance x from point A mass density


Lets take element mass at distance x
dm =λ dx
mass moment of inertia

So total moment of inertia

By putting the values

By integrating above we can find that

Now to find location of center mass


Now by integrating the above


So mass moment of inertia
and location of center of mass 
Answer:
0.010 m
Explanation:
So the equation for a pendulum period is:
where L is the length of the pendulum. In this case I'll use the approximation of pi as 3.14, and g=9.8 m\s. So given that it oscillates once every 1.99 seconds. you have the equation:

Evaluate the multiplication in front

Divide both sides by 6.28

Square both sides

Multiply both sides by m/s^2 (the s^2 will cancel out)
Now now let's find the length when it's two seconds

Divide both sides by 6.28

Square both sides

Multiply both sides by 9.8 m/s^2 (s^2 will cancel out)

So to find the difference you simply subtract
0.984 - 0.994 = 0.010 m
Voltage - V = IR : v= voltage i= current r= resistance
<em>Quantities that determine the kinetic energy of a body are its </em><em>mass and velocity </em>
Answer: <em>mass and velocity </em>
Explanation:
The kinetic energy of a body is the energy possessed by an object by virtue of its motion. It is given by the equation

Where m represents mass of the body and v represents its velocity.
Two bodies of equal velocity but different mass the heavier body will have greater kinetic energy. When an object is at rest its velocity is equal to zero. Thus its kinetic energy will be zero. Hence it can be concluded that only moving bodies have kinetic energy.
Stationary objects placed at a height possess potential energy which is the energy by virtue of their position or configuration. The total mechanical energy of a system is the sum of potential and kinetic energy.