1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Advocard [28]
3 years ago
14

PLEASE HELP WILL MARK BRAINLIEST

Mathematics
1 answer:
daser333 [38]3 years ago
3 0

Answer:

f(-4) = 5

Step-by-step explanation:

Explanation of

      _

     |   5,             x < -3

f(x) | 2x² - 4,       -3 ≤ x ≤ 4

     | 1 - 6x ,       x > 4

     _

When the x in f(x) is less than -3 than f(x) = 5

When the x in f(x) is greater than -3 but less than 4 then f(x) = 2x² - 4

When the x in f(x) is greater than 4 than f(x) = 1 - 6x

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Now that we know this lets look back at the question.

We want to find f(-4).

Looking at the piece wise function we see that f(-4) follow x < -3 as "x" or -4 is less than -3. When x is less than -3, f(x) = 5, hence f(-4) = 5

     

You might be interested in
Hi can I send a screenshot?​
kherson [118]

Answer:

Yeah

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
How can you determine if two expressions are equivalent?
Vladimir [108]
Simplify them until they can be simplified no more, then compare both sides. 
7 0
3 years ago
Convert the following sum into a product. cosx + cos3x + cos5x + cos7x
kvv77 [185]

Answer:

4\cos x\cos (4x)\cos (2x)

Step-by-step explanation:

Given: cosx + cos3x + cos5x + cos7x

To convert: the given sum into product

Solution:

Use formula: \cos A+\cos B=2\cos \left ( \frac{A+B}{2} \right )\cos \left ( \frac{A-B}{2} \right )

cosx + cos3x + cos5x + cos7x=2\cos \left ( \frac{x+3x}{2} \right )\cos \left ( \frac{x-3x}{2} \right )+2\cos \left ( \frac{5x+7x}{2} \right )\cos \left ( \frac{5x-7x}{2} \right )\\=2\cos (2x)\cos (-x)+2\cos (6x)\cos (-x)\\=2\cos (2x)\cos (x)+2\cos (6x)\cos (x)\\=2\cos x\left [ \cos (2x)+\cos (6x) \right ]

cosx + cos3x + cos5x + cos7x=2\cos \left ( \frac{x+3x}{2} \right )\cos \left ( \frac{x-3x}{2} \right )+2\cos \left ( \frac{5x+7x}{2} \right )\cos \left ( \frac{5x-7x}{2} \right )\\=2\cos x\left [ \cos (2x)+\cos (6x) \right ]\\=2\cos x\left [2 \cos \left ( \frac{2x+6x}{2} \right )\cos \left ( \frac{2x-6x}{2} \right ) \right ]\\=2\cos x\left [ 2\cos (4x) \cos (-2x) \right ]\\=4\cos x\cos (4x)\cos (2x)

4 0
3 years ago
352 divided by 4 please answer I'm literally bad at division
xxMikexx [17]
88............................

3 0
4 years ago
Read 2 more answers
What is the slope of the line that passes through the points (-1,1) and (1,-15)​
Luda [366]

Answer:

  • \boxed{\text{The slope is -8.}}

Step-by-step explanation:

To find the slope of the line, you have to use a slope formula.

<u>Slope formula:</u>

\Longrightarrow:\sf{\dfrac{y_2-y_1}{x_2-x_1} }

⇒ y2=(-15)

⇒ y1=1

⇒ x2=1

⇒ x1=(-1)

<u>Rewrite the whole problem down.</u>

\Longrightarrow: \sf{\dfrac{-15-1}{1-\left(-1\right)}=\dfrac{-16}{2}=\boxed{\sf{-8}}

  • <u>So, the slope is -8, which is our answer.</u>

I hope this helps you! Let me know if my answer is wrong or not.

5 0
2 years ago
Other questions:
  • The time series graph gives some information about the number of
    14·1 answer
  • Apply the distributive property to factor out the greatest common factor 30 + 12
    5·1 answer
  • How can you solve a simpler problem to help you find the solution
    9·2 answers
  • Equivalent ratio for 12/9
    9·1 answer
  • What are the coordinates of the point on the plane 2latex: x+y+3z = 3 x + y + 3 z = 3 that is closest to the origin?
    8·1 answer
  • Which expression is the factored form of −1.5w+7.5 ?
    8·1 answer
  • What expressions are equivalent to 5^5 over 5^3
    8·1 answer
  • Which statement about N must be true?
    9·1 answer
  • What times what equals 3/8
    12·1 answer
  • Como sacar el area de un triangulo
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!