1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
2 years ago
11

What chemical species is called alpha particle

Chemistry
2 answers:
kherson [118]2 years ago
8 0

Answer:

Helium-4 atom

Alpha particle, positively charged particle, identical to the nucleus of the helium-4 atom, spontaneously emitted by some radioactive substances, consisting of two protons and two neutrons bound together, thus having a mass of four units and a positive charge of two.

Explanation:

hope this helps

adell [148]2 years ago
3 0

helium-4 atom

<h2 /><h2>hope it helps :)</h2>
You might be interested in
Complete combustion of 7.40 g of a hydrocarbon produced 22.4 g of CO2 and 11.5 g of H2O. What is the empirical formula for the h
cluponka [151]
<span>C2H5 First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2. Carbon = 12.0107 Hydrogen = 1.00794 Oxygen = 15.999 Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488 Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087 Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass. moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule. Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen. moles C = 0.50899 moles H = 0.638361 * 2 = 1.276722 We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon. total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185 7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked. Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen. 0.50899 / 1.276722 = 0.398669 0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5. Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is C2H5</span>
3 0
3 years ago
4. When 1.00 L of 1.00 M Ba(NO3)2 solution at 25.0˚C is mixed with 1.00 L of 1.00 M Na2SO4 solution at 25.0˚C in a calorimeter,
myrzilka [38]

Answer:

The final temperature of the mixture is 28.11 °C

Explanation:

Step 1: Data given

Volume of 1.00 M Ba(NO3)2 = 1.00 L

Temperature = 25.0 °C

Volume of 1.00 M Na2SO4 = 1.00 L

enthalpy change is – 26 kJ per mol BaSO4

The specific heat of water is 4.18 J/g ·˚C

the density of water is 1.00 g/mL

Step 2: The balanced equation

Ba(NO3)2(aq) + Na2SO4(aq) → 2NaNO3(aq) + BaSO4(s)

Step 3: Calculate the total volume

Total volume = 1.00 L + 1.00 L = 2.00 L = 2000 mL

Step 4: Calculate mass

Mass = volume * density

Mass = 2000 mL * 1g/mL

Mass = 2000 grams

Step 5: Calculate moles BaSO4 formed

For 1 mol Ba(NO3)2 we need 1 mol Na2SO4 to produce 1 mol BaSO4

There is no limiting reactant, both Ba(NO3)2 and Na2SO4 will be completely be consumed (1 mol). We'll have 1.0 mol of BaSO4 produced.

Step 6: Calculate Q

Q = - ΔH

ΔH is negative so the reaction is exothermic, what means the temperature increases

Q is always positive, so Q = 26kJ = 26000 J

Step 6: Calculate the heat transfer

Q= m*c*ΔT

⇒with Q = the heat transfer = TO BE DETERMINED

⇒with m =the mass of the solution = 2000 grams

⇒with c= the specific heat of the solution = 4.18 J/g°C

⇒with ΔT = the change of temperature = T2 - T1 = T2 - 25.0

26000 = 2000 * 4.18 * (T2 - 25.0 °C)

3.11 = T2 - 25.0 °C

T2 = 25.0 + 3.11 °C

T2 = 28.11 °C

The final temperature of the mixture is 28.11 °C

7 0
3 years ago
Which process breaks down sugars to release energy that powers bodily functions?
alekssr [168]

Answer:

Cellular respiration

Explanation:

5 0
3 years ago
How many significant figures<br> are in this number?<br> 107.051
NARA [144]

Answer:

there are 6 significant figures in 107.051

7 0
3 years ago
Read 2 more answers
The chemical bonding in sodium phosphate, Na3PO4, is classified as:
fiasKO [112]
<span>Ionic bonding between sodium and phosphate ions.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • A colored ion generally indicates a _________.
    15·2 answers
  • Which is an example of an endothermic reaction?
    10·2 answers
  • What is a orgasm that kills and eats other orgasms for food called?
    15·2 answers
  • Copper will NOT easily form a new substance when in contact with which of the following? moist air nitric acid sulfuric acid car
    13·2 answers
  • The anticodon is the three-base code on the tRNA molecule that binds to the codon on mRNA. What is the associated codon for the
    10·2 answers
  • When might you receive a blood transfusion<br><br><br> Help me pls
    12·1 answer
  • PLEASE HELP I WILL GIVE YOU 100 POINTS ON THE NEXT QUESTION
    9·1 answer
  • What do you think happens to Difluoroethane at –24°C? Provide evidence to support your claim.
    13·1 answer
  • In 1945, a Raytheon engineer named Percy Spencer was fiddling with energy sources for radar equipment. While testing a new vacuu
    5·1 answer
  • Why is zinc not extracted from ZnO through reduction using CO?​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!