The solutions vapor pressure would be lower.
Answer:
32.6%
Explanation:
Equation of reaction
2KClO₃ (s) → 2KCl (s) + 3O₂ (g)
Molar mass of 2KClO₃ = 245.2 g/mol ( 122.6 × 2)
Molar volume of Oxygen at s.t.p = 22.4L / mol
since the gas was collected over water,
total pressure = pressure of water vapor + pressure of oxygen gas
0.976 = 0.04184211 atm + pressure of oxygen gas at 30°C
pressure of oxygen = 0.976 - 0.04184211 = 0.9341579 atm = P1
P2 = 1 atm, V1 = 789ml, V2 = unknown, T1 = 303K, T2 = 273k at s.t.p
Using ideal gas equation
=
V2 =
V2 = 664.1052 ml
245.2 yielded 67.2 molar volume of oxygen
0.66411 will yield =
= 2.4232 g
percentage of potassium chlorate in the original mixture =
= 32.6%
Theyre the big bunched up group in the middle of the periodic table
Answer:
1 and 3.
Explanation:
The entropy measures the randomness of the system, as higher is it, as higher is the entropy. The randomness is associated with the movement and the arrangement of the molecules. Thus, if the molecules are moving faster and are more disorganized, the randomness is greater.
So, the entropy (S) of the phases increases by:
S solid < S liquid < S gases.
1. The substance is going from solid to gas, thus the entropy is increasing.
2. The substance is going from a disorganized way (the molecules of I are disorganized) to an organized way (the molecules join together to form I2), thus the entropy is decreasing.
3. The molecules go from an organized way (the atom are joined together) to a disorganized way, thus the entropy increases.
4. The ions are disorganized and react to form a more organized molecule, thus the entropy decreases.