Answer:
to find out how somethings work
Explanation:
Answer:
b. ΔE rxn is a measure of heat
Explanation:
a. ΔHrxn is the heat of reaction. <em>TRUE. </em>ΔHrxn or change in enthalpy of reaction is per definition the change in heat that is involved in a chemical reaction.
b. ΔErxn is a measure of heat. <em>FALSE. </em>Is the change in internal energy of a reaction
c. An exothermic reaction gives heat off heat to the surroundings. <em>TRUE</em>. An exothermic reaction is a chemical reaction that releases heat.
d. Endothermic has a positive ΔH. <em>TRUE. </em>When a process is exothermic ΔH<0 and when the process is endothermic ΔH>0
e. Enthalpy is the sum of a system's internal energy and the product of pressure and volume. <em>TRUE. </em>Under constant pressure and volume the formula is ΔH = ΔE + PV
I hope it helps!
The gases we create are adding to that blanket making sun light harder to escape,so the world heats up due to this addition to the layer
Answer is: the molar mass od sodium carbonate (Na₂CO₃) is 106.0 g/mol.
M(Na₂CO₃) = 2 · Ar(Na) + Ar(C) + 3 · Ar(O).
M(Na₂CO₃) = 2 · 23 + 12 + 3 · 16 · g/mol.
M(Na₂CO₃) = 46 + 12 + 48 · g/mol.
M(Na₂CO₃) = 106 g/mol; molar mass of sodium carbonate.
Ar is relative atomic mass (the ratio of the average mass of atoms of a chemical element to one unified atomic mass unit) of an element.
The quantity of heat required to vapourize 1 mole of a substance depends on the kind of intermolecular forces between the molecules of the substance. Diethyl ether molecules are held together by weak dispersion forces compared to the stronger hydrogen bonding in ethanol. Therefore, 1 mole of diethyl ether requires less heat to vapourize than is required to vapourize 1 mole of ethanol.
Intermolecular forces hold the molecules a substance together in a given state of matter. The properties of a substance such as boiling point, melting point etc are dependent on the nature of intermolecular forces holding the molecules of the substance.
Diethyl ether molecules are held together by weak dispersion forces while molecules of ethanol are held together by hydrogen bonds.
Since hydrogen bonds are much stronger than dispersion forces, a greater quantity of heat is required to break the intermolecular hydrogen bonds in ethanol in order to vapourize them than is required to vapourize diethyl ether.
Therefore, owing to stronger intermolecular forces between molecules of ethanol, less heat is required to vapourize than is required to vapourize 1 mole of ethanol.
Learn more: brainly.com/question/9328418