Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
Answer:
22 kph
Explanation:
You simply divide the distance and the time. 66/3 = 22.
Answer:
0.00471 grams H₂O
Explanation:
To determine the mass, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat capacity (J/g°C)
-----> ΔT = temperature change (°C)
The specific heat capacity of water is 4182 J/g°C. You can plug the given values into the equation and simplify to isolate "c".
Q = 0.709 J c = 4182 J/g°C
m = ? g ΔT = 0.036 °C
Q = mcΔT <----- Equation
0.709 J = m(4182 J/g°C)(0.036 °C) <----- Insert values
0.709 J = m(150.552) <----- Multiply 4182 and 0.036
0.00471 = m <----- Divide both sides by 150.552
Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.