<u>Given</u><u> </u><u>:</u><u> </u>
- There is a quadrilateral.
- Two sides of the quadrilateral are parallel .
- Four angles are 96° , 2x° , 94° & ( 3y + 44 )°.
<u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u>-</u>
<u>Solu</u><u>tion</u><u> </u><u>:</u><u>-</u>
Here , 96° & 2x° are co - interior angles and we know that the sum of co - Interior angles is 180°.
⇒ 96° + 2x = 180° .
⇒ 2x = 180° - 96° .
⇒ 2x = 84° .
⇒ x = 
<u>Hence</u><u> </u><u>value</u><u> </u><u>of </u><u>x</u><u> </u><u>is</u><u> </u><u>4</u><u>2</u><u>°</u><u> </u><u>.</u>
Similarly , 94° & ( 3y + 44) ° are co- interior angles
⇒ 94° + ( 3y + 44)° = 180° .
⇒ ( 3y + 44 )° = 180° - 94° .
⇒ 3y + 44° = 86°.
⇒ 3y = 86° - 44° .
⇒ 3y = 42° .
⇒ y = 
<u>Hence</u><u> </u><u>the </u><u>value</u><u> </u><u>of</u><u> </u><u>y</u><u> </u><u>is</u><u> </u><u>1</u><u>4</u><u>°</u><u>.</u>
The answer is D. 3x^3+4x^2-11x+3

will factor into the following

Set each factor equal to 0:

or


x = +/- 2i x = +/- 6
Answer: 2i, 6, -6
Answer:
x=27
Step-by-step explanation:
The sum of the angles of a triangle is 180 degrees
90 + x+23 + x+13 = 180
Combine like terms
126 +2x = 180
Subtract 126 from each side
126-126 +2x=180-126
2x =54
Divide by 2
2x/2 = 54/2
x = 27