1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreev551 [17]
3 years ago
11

Use definition of the derivatives to find the derivative of each function with respect to x.

Mathematics
1 answer:
yanalaym [24]3 years ago
6 0
Answer:
The slope is 5
Step-by-step explanation:
This equation is in slope intercept form
y = mx +b
where m is the slope and b is the y intercept
y = 5x+4
where 5 is the slope and 4 is the y intercept
You might be interested in
2.7·6.2–9.3·1.2+6.2·9.3–1.2·2.7 not pemdas
antiseptic1488 [7]

<em></em>

<em>60</em>

<em>See steps</em>

<em>Step by Step Solution:</em>

<em>More Icon</em>

<em>Reformatting the input :</em>

<em>Changes made to your input should not affect the solution:</em>

<em />

<em>(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)</em>

<em />

<em>STEP</em>

<em>1</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>1</em>

<em>:</em>

<em>     27 62   93 12    62 93    12 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(——•——)</em>

<em>     10 10   10 10    10 10    10 10</em>

<em>STEP</em>

<em>2</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>2</em>

<em>:</em>

<em>     27 62   93 12    62 93    6 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(—•——)</em>

<em>     10 10   10 10    10 10    5 10</em>

<em>STEP</em>

<em>3</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>3</em>

<em>:</em>

<em>     27 62   93 12    62 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    10 10   25</em>

<em>STEP</em>

<em>4</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>4</em>

<em>:</em>

<em>     27 62   93 12    31 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    5  10   25</em>

<em>STEP</em>

<em>5</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>5</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>6</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>6</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>7</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>7</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>8</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>8</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>9</em>

<em>:</em>

<em>Calculating the Least Common Multiple</em>

<em> 9.1    Find the Least Common Multiple</em>

<em />

<em>      The left denominator is :       50 </em>

<em />

<em>      The right denominator is :       25 </em>

<em />

<em>        Number of times each prime factor</em>

<em>        appears in the factorization of:</em>

<em> Prime </em>

<em> Factor   Left </em>

<em> Denominator   Right </em>

<em> Denominator   L.C.M = Max </em>

<em> {Left,Right} </em>

<em>2 1 0 1</em>

<em>5 2 2 2</em>

<em> Product of all </em>

<em> Prime Factors  50 25 50</em>

<em />

<em>      Least Common Multiple:</em>

<em>      50 </em>

<em />

<em>Calculating Multipliers :</em>

<em> 9.2    Calculate multipliers for the two fractions</em>

<em />

<em />

<em>    Denote the Least Common Multiple by  L.C.M </em>

<em>    Denote the Left Multiplier by  Left_M </em>

<em>    Denote the Right Multiplier by  Right_M </em>

<em>    Denote the Left Deniminator by  L_Deno </em>

<em>    Denote the Right Multiplier by  R_Deno </em>

<em />

<em>   Left_M = L.C.M / L_Deno = 1</em>

<em />

<em>   Right_M = L.C.M / R_Deno = 2</em>

<em />

<em />

<em>Making Equivalent Fractions :</em>

<em> 9.3      Rewrite the two fractions into equivalent fractions</em>

<em />

<em>Two fractions are called equivalent if they have the same numeric value.</em>

<em />

<em>For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.</em>

<em />

<em>To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.</em>

<em />

<em>   L. Mult. • L. Num.      837</em>

<em>   ——————————————————  =   ———</em>

<em>         L.C.M             50 </em>

<em />

<em>   R. Mult. • R. Num.      279 • 2</em>

<em>   ——————————————————  =   ———————</em>

<em>         L.C.M               50   </em>

<em>Adding fractions that have a common denominator :</em>

<em> 9.4       Adding up the two equivalent fractions</em>

<em>Add the two equivalent fractions which now have a common denominator</em>

<em />

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 837 - (279 • 2)     279</em>

<em> ———————————————  =  ———</em>

<em>       50            50 </em>

<em>Equation at the end of step</em>

<em>9</em>

<em>:</em>

<em>   279    2883     81</em>

<em>  (——— +  ————) -  ——</em>

<em>   50      50      25</em>

<em>STEP</em>

<em>10</em>

<em>:</em>

<em>Adding fractions which have a common denominator</em>

<em> 10.1       Adding fractions which have a common denominator</em>

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 279 + 2883     1581</em>

<em> ——————————  =  ————</em>

<em>     50          25 </em>

<em>Equation at the end of step</em>

<em>10</em>

<em>:</em>

<em>  1581    81</em>

<em>  ———— -  ——</em>

<em> </em>  25     25

STEP

11

:

Adding fractions which have a common denominator

11.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81)     60

———————————  =  ——

    25          1

Final result :

 60

7 0
3 years ago
Help and explain <br><br> Find the area of the circle <br> Use 3.14 for. Do not round your answers
tino4ka555 [31]
Answer:
3.14x8^2= 200.96
6 0
3 years ago
A factory produces 70 toys per hour. The relationship between the number of toys produced, t, and the number of hours elapsed, h
MrRissso [65]

<u>B</u><u>)</u><u> </u><u>t</u><u> </u><u>=</u><u> </u><u>7</u><u>0</u><u> </u><u>h</u>

<u>A factory produces 70 toys per hour. The relationship between the number of toys produced, t, and the number of hours elapsed, h, is proportional.</u>

4 0
3 years ago
HELP PLEASE!!!!!!!!!!!!
miskamm [114]
Given that < 1 and < 3 are corresponding angles with the same measure, and that < 1 and m < 38 ° are supplementary angles in which their measures add up to 180°:

Then:

m< 1 + m < 38° = 180°

m < 1 = 180° — m < 38°

m < 1 = 142°

Since m < 1 = m < 3, then m < 3 = 142°
7 0
3 years ago
Write power 4 root 81 power 5 in expontial form A. 81 power 9 B. 81 power 5/4 C. 81 power 4/5
Tomtit [17]

Answer:B

Step-by-step explanation:

4√(81^5)

(81^5)^(1/4)

81^(5/4)

4 0
3 years ago
Other questions:
  • Please help me. I am confused
    10·1 answer
  • What is 9 to the 9th power
    12·1 answer
  • What is... y=15x+2100
    15·1 answer
  • What is the area of parallelogram RSTU?
    14·2 answers
  • 3(d – 4) + 1 = 10 what does D equal?
    13·2 answers
  • How many kilometers did they drive per hour
    6·1 answer
  • Convert 4years to months. ​
    13·2 answers
  • Find the probability of getting an ace when a card is drawn randomly from a well shued pack of 52 cards.​
    8·1 answer
  • Benji surveyed 120 people in his town. He found out that 45 people go to the park everyday.what part of the town population prob
    15·1 answer
  • Write an equation that represents the line.<br> Use exact numbers.
    9·3 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!