The area of a square is simply the side length squared and we are given that the area is 125 so:
s^2=125
s=√125
s=5√5
Now using the area equation again, and adding 1 inch to s we have:
A=(s+1)^2, and using s found above we have:
A=(5√5+1)^2
A=125+10√5+1
A=126+10√5 in^2
A≈148.36 in^2 (to nearest hundredth of a square inch)
Answer:
Perimetre of the rencatngel Perimetre of the circle and substrac the.
Menjawab:
[(√1-p²) -3√p] / 2
Penjelasan langkah demi langkah:
Dari identitas trigonometri, pemuaiannya benar:
Cos (A + B) = cosAcosB-sinAsinB
Menerapkan ini dalam memperluas cos (x + 60).
cos (x + 60) = cosxcos60 - sinxsin60
Jika sinx = p = berlawanan / sisi miring
opp = p, hyp = 1
adj² = 1²-p²
adj = √1-p²
Cos (x) = adj / hyp = √1-p² / 1
Cos (x) = √1-p²
Cos60 = 1/2 dan sin60 = √3 / 2
Mengganti nilai-nilai ini ke dalam rumus
cos (x + 60) = cosxcos60 - sinxsin60
cos (x + 60) = √1-p² (1/2) - p (√3 / 2)
cos (x + 60) = (√1-p²) / 2 - √3p / 2
Temukan KPK tersebut
cos (x + 60) = [(√1-p²) -3√p] / 2
Oleh karena itu cos (x + 60) = [(√1-p²) -3√p] / 2
Yes he did, the proof is in the context
Surface Area= Length × hypotenuse+ length × width+2(1/2 base × height)+Lenght×base
Surface Area= 19×25+19×7+24×7+19×24
SA=1232 m²