m x H = ![\left[\begin{array}{ccc}-25&37.5&-12.5\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%2637.5%26-12.5%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Step 1; Multiply 5 with this matrix
and we get a matrix ![\left[\begin{array}{ccc}-5&10\\20&40\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%2610%5C%5C20%2640%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Multiply the fraction
with the matrix
and we get ![\left[\begin{array}{ccc}-\frac{2m}{5} &\frac{4m}{5} \\\frac{8m}{5} &\frac{16m}{5} \\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B2m%7D%7B5%7D%20%26%5Cfrac%7B4m%7D%7B5%7D%20%5C%5C%5Cfrac%7B8m%7D%7B5%7D%20%26%5Cfrac%7B16m%7D%7B5%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step2; Now equate corresponding values of the matrices with each other.
-5 =
and so on. By equating we get the value of m as 
Step 3; Add the matrices to get the value of matrix m.
Adding the three matrices on the RHS we get
.
Step 4; Adding the matrices on the LHS we get the resulting matrix as H +
. Equating the matrices from step 3 and 4 we get the value of H as ![\left[\begin{array}{ccc}-2&3&-1\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%26-1%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step 5; Now to find the value of m x H we need to multiply the value of
with the matrix
Step 6; Multiplying we get the matrix m x H = [ -25
]
1) Since we have the slope, and one point we can find that linear equation using this point-slope formula. Plugging them we have:

2) Note that we had to add 1 to both sides, to keep the "y "on the left.
3) Therefore, y=-9x+10 is the answer.
For this case we have a function of the form:
y = A * (b) ^ t
Where,
A: initial amount
b: decrease rate
t: time
Substituting values we have:
y = 200 * (0.946) ^ t
Answer:
An exponential function showing the relationship between and and is:
y = 200 * (0.946) ^ t
Answer:
140 m/s
Step-by-step explanation: