Answer:
Question 1:
Here total number of students GPA is given = 50
Number of people who have GPA more than 3.69 = 5
Therefore,
Pr(That a student has GPA more than 3.69) = 5/50 = 0.1
Here X ~ NORMAL (3.12, 0.4)
so Pr(X > 3.69) = Pr(X > 3.69 ; 3.12 ; 0.4)
Z = (3.69 - 3.12)/ 0.4 = 1.425
Pr(X > 3.69) = Pr(X > 3.69 ; 3.12 ; 0.4) = 1 - Pr(Z < 1.425) = 1 - 0.9229 = 0.0771
Question 2
Here GPA would be above 95.54th percentile
so as per Z table relative to that percentile is = 1.70
so Z = (X - 3.12)/ 0.4 = 1.70
X = 3.12 + 0.4 * 1.70 = 3.80
so any person with GPA above or equal to 3.80 is eligible for that.
Answer:
B, C, and D
Step-by-step explanation:
Answer:
Option (C)
Step-by-step explanation:
If two functions are f(x) and k(x),
(f o g)(x) = f[g(x)]
From the question given in the picture attached,
We have to find the value of (h o k)(1).
(h o k)(x) = h[k(x)]
= h[k(1)]
= h(3) [Since, k(1) = 3]
= 28 [Since, h(3) = 28]
Therefore, (h o k)(1) = 28 will be the answer.
Option (C) will be the correct option.
Answer:
Piecewise functions (or piece-wise functions) are just what they are named: pieces of different functions (sub-functions) all on one graph. The easiest way to think of them is if you drew more than one function on a graph, and you just erased parts of the functions where they aren’t supposed to be (along the ’s); they are defined differently for different intervals of . So is defined differently for different values of ; we use the to look up what interval it’s in, so we can find out what the is supposed to be. Note that there is an e…
See more on shelovesmath.com
Step-by-step explanation: