Answer:
The minimum sample size needed is 125.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

For this problem, we have that:

99% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
What minimum sample size would be necessary in order ensure a margin of error of 10 percentage points (or less) if they use the prior estimate that 25 percent of the pick-axes are in need of repair?
This minimum sample size is n.
n is found when 
So






Rounding up
The minimum sample size needed is 125.
Answer:
721000
Step-by-step explanation:
The figure below shows a diagram of this problem. First of all we graph the hemisphere. This one has a radius equal to 1. Given that z ≤ 0 a sphere will be valid only in the negative z-axis, that is, we will get a half of a sphere that is the hemisphere shown in the figure. We know that this hemisphere is oriented by the inward normal pointing to the origin, then we have a Differential Surface Vector called
N, using the Right-hand rule <span>the boundary orientation is </span>counterclockwise.
Therefore, the answer above
False
The distance between the points (6,2) and (-3,-2) is A) 9 units.