Gamma rays can pass through a lot
What it looks to be that you found in A was the "initial"...b/c the question asks:
<span>"how much energy does the electron have 'initially' in the n=4 excited state?" </span>
<span>"final" would be where it 'finally' ends up at, ie. its last stop...as for this question...the 'ground state' as in its lowest energy level. </span>
The answer comes to: <span>−1.36×10^−19 J</span>
You use the same equation for the second part as for part a.
<span>just have to subract the 2 as in the only diff for part 2 is that you use 1squared rather than 4squared & subract "final -initial" & you should get -2.05*10^-18 as your answer. </span>
Answer: the work done by the force is 0
Explanation:
F (x², xy)
121 = 11²
so R = x² + y² = 11²
p = x². Q = xy
Δp/Δy = 0, ΔQ/Δx
using Green's theorem
woek = c_∫F.Δr = R_∫∫ ΔQ/Δx - Δp/Δy) ΔA
= (x² + y² = 121)_∫∫ yΔA
now let x = rcosФ, y = rsinФ
ΔA = rΔrΔФ
so r from 0 to 11
and Ф from 0 to 2π
= 0_∫^2π 0_∫^11 rsinФ × rΔrΔФ
= 0_∫^2π SinФΔФ 0_∫^11 r²Δr
= [ -cosФ]^2π_0 [r³/3]₀¹¹ = ( -cos2π + cos0) (11³/3) = 0
therefore the work done by the force is 0
A slice of cheese. Homogenous mixtures have the same appearance throughout.