To solve this problem it is necessary to apply the concepts concerning the conservation of both potential and thermodynamic energy of the body. That is to say that as the body has a loss of potential energy it is gained in the form of thermal energy on water. If the potential energy is defined as

Where,
m= mass
g = Gravitational acceleration
h = Height
And thermal energy is obtained as

Where,
= Change in Temperature
Specific Heat
m = Mass
We can equate this equation and rearrange to find the change at the Temperature, then


Our values are given as,
Specific Heat Water
Using energy conservation


Replacing,


Therefore the temperature increase in a 1kg sample of water is 1.89K
Answer:
car fuel
production waste (like producing plastic, car, materials)
breathing
landfill
cement production
deforestation (cutting down trees)
burning of fossil fuels (coals, oil, natural gases)
Please mark Brainliest
Explanation:
The value of the angle of the incline

at which the block starts to slide is the angle at which the component of the weight parallel to the incline becomes equal to the frictional force that keeps the block on the incline:

where the term on the left is the component of the weight parallel to the incline, and the term on the right is the frictional force, which is the product between the coefficient of friction

and the normal reaction of the incline N.
The normal reaction of the incline, N, is equal to the component of the weight perpendicular to the incline:

Therefore, the initial equation becomes

From which we find


For angles above this value, the block will start sliding down, otherwise the block will stay on the incline.