From the given information in the question, the correct option is Option 1: 14 cm.
A non-stretched elastic spring has a conserved potential energy which gives it the ability to perform work. The elastic potential energy can be expressed as:
PE = k
Where PE is the energy, k is the spring constant and x is extension.
i. Given that: PE = 10 J and x = 10 cm, then;
PE = k
10 = k
20 = 100k
k = 0.2 J/cm
ii. To determine how far the spring is needed to be stretched, given that PE = 20 J.
PE = k
20 = (0.2)
40 = 0.2
= 200
x =
= 14.1421
x = 14.14 cm
So that;
x is approximately 14.00 cm.
Thus, the spring need to be stretched to 14.00 cm to give the spring 20 J of elastic potential energy.
For more information, check at: brainly.com/question/1352053.
I’m going to use molasses as an example of a substance.
The mass and volume both change when changing the amount of molasses.
However, the density does not change. This is because the mass and volume increase at the same rate/proportion!
Even though there is more molasses (mass) in test tube A, the molasses also takes up more space (volume). Therefore, the spacing between those tiny particles that make up the molasses is constant (does not change).
The size or amount of a material/substance does not affect its density.
1.) potential energy
2.)potential and kinetic
3.)The roller coaster car has the most kinetic energy at point X i know this because the car is moving and kinetic energy has the power to move or change things therefore point X is when the roller coaster car has the most energy.
4.)potential energy
5.)kinetic energy
6.) potential and kinetic energy
Answer:
the new resister is 11 ohms.
Explanation:
Set it up like this.
1/x + 1/1.1 = 1 Subtract 1/1.1 from both sides
1/x = 1 - 1/1.1
1 - 1/1.1 = 1/11
1/x = 1/11 Cross multiply
11 = x
If 1/11 bothers you, you could do it it another way.
1 - 1/1.1 = (1.1 - 1 ) / 1.1 = 0.1 / 1.1 Multiply top and bottom by 10
0.1*10/(1.1 * 10 ) = 1 / 11