Answer:
We need to separate the x- and y-components of the applied force. For simplicity, I will denote the direction along the inclined plane as x-direction, and the perpendicular direction as y-direction.

Only the x-component of the applied horizontal force does work on the trunk.
But we need to find the magnitude of the force. We know that the trunk is moving with constant speed. So, the x-component of the applied force is equal to the x-component of the gravitational force plus the force of friction.



The work done by the weight of the trunk can be calculated similarly. Only the x-component of the weight does work on the trunk.

Note that the direction of the weight force is opposite of the direction of the motion, so this force does negative work on the trunk.

The energy dissipated by the frictional force can be found as follows:

Additionally, the sum of work done by the friction and weight is equal in magnitude to the work done by the applied force. This shows that our calculations are consistent.
In the second part of the question, the applied force is on the x-direction. We will follow a similar procedure but a different force.




Explanation:
As you can see above, the answers are the same, although the directions of the applied forces are different. The reason for this situation is that in the first part the y-component does no work.
<span>Displacement is the difference between the initial position and the FINAL position of an object.
Hope this helps!</span>
Changing the medium of the wave.
Waves is always determined by the properties of the medium, which means that changing the medium will change the velocity of the wave
Answer:
D. Forces between molecules
Explanation:
Specific heat capacity of water can be defined as the amount of heat a gram of water must lose or absorb in order to change its temperature by a degree Celsius. It is measured in Joules per kilogram per degree Celsius (J/kg°C). Generally, the specific heat capacity of water is 4.182J/kg°C and is the highest among liquids.
Mathematically, the specific heat capacity of a substance is given by the formula;

Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
Cohesion is a property of water and it typically refers to the attraction between molecules of water which holds them together.
In Science, the property which helps to explain differences in the specific heat capacities of two substances is the forces between molecules.
This ultimately implies that, the more closely bonded the atoms of a substance are, the higher or greater would be the substance's specific heat capacity. Thus, it varies for the various states of matter i.e solid, liquid and gas.
800 J Got it right on edgenuity