The long bones are those that are longer than they are wide.
They are one of five types of bones long, short, flat, irregular and sesamoid.
Answer:
B. Nearly every amino acid translated after the error will create the wrong protein after the deletion of a base.
Explanation:
Generally, mutations occur in two ways: 1) a base replacement, where one base is replaced for another; 2) insertion or deletion, where a base is either incorrectly inserted or deleted from a codon.
When a nucleotide is wrongly inserted or deleted from a codon, the effects of this change can be extreme. An insertion or deletion can affect every codon in a particular genetic sequence. For example, given the code:
GAU GAC UCC GCU AGG. It is the codes for the amino acids aspartate, aspartate, serine, alanine, and arginine. If the A in the GAU were to be deleted, the code would become GUG ACU CCG UAG G. It won't produce any right amino acid.
So, if the code becomes changes, it won't produce any amino acid or will produce the wrong amnio acid.
Answer:
A. definite volume and definite shape
Mark me as brainliest
Answer:
The correct answer is : C .It will decrease ATP production because fewer protons will be able flow down through ATP synthase.
Explanation:
- Oxidative Phosphorylation is a process which involves two steps:
- Transport of electrons from the reduced compounds like NADH (Nicotinamide adenine dinucleotide hydrogen) and FADH₂ (Flavin adenine dinucleotide dihydrogen) through the electron transport complexes, located in the inner mitochondrial membrane, to oxygen for the generation of water molecules.
- Synthesis of ATP or adenosine triphosphate from ADP or adenosine diphosphate and inorganic phosphate by an enzyme called ATP synthase which is located in the inner mitochondrial membrane. This enzyme harnesses energy by carrying protons from the inter-membrane space into the mitochondrial matrix and in the process produces ATP.
- Oxidative phosphorylation takes place in the mitochondria, especially involving the inter membrane space, inner membrane and mitochondrial matrix
- During the transport of electrons through the protein complexes (I, II, III, IV) of the electron transport chain a proton gradient is generated across the inner mitochondrial membrane.
- The proton gradient is such that the concentration of protons is more in the inter-membrane space and less in the matrix of the mitochondria.
- This proton gradient provides the energy to the ATP synthase for the synthesis of ATP.
- Dinitrophenol is responsible for making the inner mitochondrial membrane permeable to protons. As a result protons can directly diffuse through the inner mitochondrial membrane from the inter-membrane space into the mitochondrial matrix equalising the concentration of protons across the inner mitochondrial membrane. This causes distortion in the proton gradient. Hence, protons are no longer available for the ATP synthase to operate and synthesise ATP.
Answer:
biologists have a 14ft john boat with trolling motor for sale or trade