Answer:
scientists got the space station up in space in to small pieces.
Explanation:
The main problem which was faced by the scientist was that there was no powerful rocket which has the ability to lift the whole space station due to its more weight and carry it to the space against the powerful force of gravity. So for solving this problem, space station is taken into pieces into the space and then these pieces should be join to build the space station.
The answer is false. To explain further, let G have vertices
{v1, v2, v3, v4}, with ends between each pair of vertices, and with the mass on
the edge from vi to vj equal to I + j. Then each tree has a bottle neck edge mass
of as a minimum of 5, so the tree containing of a track through vertices v3, v2,
v1,v4 is a least bottleneck tree. It is not a least spanning tree, though, subsequently
its total mass is greater than that of the tree with edges from v1 to every
single vertex.
Answer:
The answer is 46 chromosomes.
Before mitosis, cell duplicates its DNA material so there are 46 chromosomes in duplicates and in total there are 46 x 2 = 92 sister chromatids. During mitosis, sister chromatids first join in the middle of the cell and then separate towards the opposite sides of the cell. After they separate, there are 46 sister chromatids on the one side and 46 sister chromatids on the other side. Each sister chromatid at the end of cytokinesis actually represents the chromosome of the newly formed daughter cell.
Explanation:
Answer: See attached picture.
Explanation:
DNA or deoxyribonucleic acid is the name for the molecule that contains the genetic information in all living things. This molecule consists of two strands that wind around each other to form a double helix structure.
The basic unit of nucleic acids are called nucleotides, which are organic molecules formed by the covalent bonding of a nucleoside (a pentose which is a type of sugar and a nitrogenous base) and a phosphate group. So each nucleotide is made up of a pentose sugar called deoxyribose, a nitrogenous base which can be adenine (A), thymine (T), cytosine (C) or guanine (G) and a phosphate group.
<u>What distinguishes one polynucleotide from another is the nitrogenous base</u>, and thus the sequence of DNA is specified by naming only the sequence of its bases. The sequential arrangement of these four bases along the chain is what encodes the genetic information, following the following criterion of complementarity: A-T and G-C. So the sequence of these bases along the chain is what encodes the instructions for forming proteins and RNA molecules. In living organisms, DNA occurs as a double strand of nucleotides, in which the two strands are linked together by connections called hydrogen bridges.
The chemical convention of naming the carbon atoms in the pentose nucleotide pentose numerically confers the names 5' end and 3' end ("five prime end" and "three prime end" respectively). The 5'-end designates the end of a DNA strand that coincides with the phosphate group of the fifth carbon of the respective terminal deoxyribose. A phosphate group attached to the 5'-end allows the ligation of two nucleotides; for example, the covalent bonding of the 5'-phosphate group to the 3'-hydroxyl group of another nucleotide, to form a phosphodiester bond.
Given that an average human has a heart rate of 70 beats per minute and if one is to have a 70 year life span, the number of times it will beat is 2,575,440,000 times. This was computed by multiply 70 years by 365 days/year x 24 hours/day x 60 minutes/hour x 70 beats/min. Thus, the heart will beat numerous times before it finally stops.