1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
7

Show that: |A⃗ + B⃗ |² - |A⃗ - B⃗ |² = 4 A⃗.B⃗ .​

Mathematics
1 answer:
Inessa05 [86]3 years ago
4 0
<h3><u>Given </u><u>Question:</u><u>-</u></h3>

Prove that :

\sf \:  { |\vec{A} + \vec{B}| }^{2}  -  { |\vec{A} - \vec{B}| }^{2}  = 4 \: \vec{A} \: . \: \vec{B}

\green{\large\underline{\sf{Solution-}}}

<u>Consider, LHS</u>

\rm :\longmapsto\: { |\vec{A} + \vec{B}| }^{2}  -  { |\vec{A} - \vec{B}| }^{2}

We know,

\rm :\longmapsto\:\boxed{\tt{  |\vec{x}|  ^{2}  = \vec{x}.\vec{x}}}

So, using this, we get

\rm \:  =  \: (\vec{A} + \vec{B}).(\vec{A} + \vec{B}) - (\vec{A} - \vec{B}).(\vec{A} - \vec{B})

\rm \:  =  \:[ \vec{A}.\vec{A} + \vec{A}.\vec{B} + \vec{B}.\vec{A} + \vec{B}.\vec{B}] - [\vec{A}.\vec{A} - \vec{A}.\vec{B} - \vec{B}.\vec{A} + \vec{B}.\vec{B}]

\rm \:  =  \: [ { |\vec{A}| }^{2} + \vec{A}.\vec{B} + \vec{A}.\vec{B} +  { |\vec{B}| }^{2}] - [ { |\vec{A}| }^{2} - \vec{A}.\vec{B} - \vec{A}.\vec{B} +  { |\vec{B}| }^{2}]

\red{ \bigg\{  \sf \: \because \: \vec{A}.\vec{B} = \vec{B}.\vec{A} \bigg\}}

\rm \:  =  \: [ { |\vec{A}| }^{2} + 2\vec{A}.\vec{B} +  { |\vec{B}| }^{2}] - [ { |\vec{A}| }^{2} -2 \vec{A}.\vec{B} +  { |\vec{B}| }^{2}]

\rm \:  =  \:  { |\vec{A}| }^{2} + 2\vec{A}.\vec{B} +  { |\vec{B}| }^{2}- [{ |\vec{A}| }^{2}  + 2 \vec{A}.\vec{B}  -  { |\vec{B}| }^{2}

\rm \:  =  \: 4 \: \vec{A}.\vec{B}

<u>Hence, </u>

\sf \:\boxed{\tt{  \:  \:   { |\vec{A} + \vec{B}| }^{2}  -  { |\vec{A} - \vec{B}| }^{2}  = 4 \: \vec{A} \: . \: \vec{B} \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Additional Information</u></h3>

\boxed{\tt{ \vec{A}.\vec{B} = \vec{B}.\vec{A}}}

\boxed{\tt{ \vec{A}.\vec{A} =  { |\vec{A}| }^{2} }}

\boxed{\tt{ \vec{A} \times \vec{B} =  - \vec{B} \times \vec{A}}}

\boxed{\tt{ \vec{A} \times \vec{A} = 0}}

\boxed{\tt{ \vec{A}.\vec{B} = 0 \: \rm\implies \:\vec{A} \:  \perp \: \vec{B}}}

\boxed{\tt{ \vec{A} \times \vec{B} = 0 \: \rm\implies \:\vec{A} \:  \parallel \: \vec{B}}}

You might be interested in
Which number goes to which box??!
mars1129 [50]
2,4,5 gos in yes 6 gos in no. And 1,3 gos not enough information
8 0
3 years ago
Write the equation in standard form. Then factor the left side of the equation. 3x2 + 19x = 14
solong [7]
3x^2+19x-14=0 Standard form
(3x-2)(x+7)=0 Factored
7 0
3 years ago
Read 2 more answers
Which shape doesn’t belong belong? Explain your reasoning.
Kazeer [188]
The trapezoid on the bottom right doesn’t belong. All the other quadrilaterals have opposite sides that are congruent.
7 0
3 years ago
Read 2 more answers
3/15 + 9/15 + 26/15=
klasskru [66]

Answer:

Mixed number - 2 8/15

decimal - 2.53

Step-by-step explanation:

3+9+26=38

denominator is 15

38/15 convert to a mixed number =

2 8/15  as a decimal is 2.53

4 0
3 years ago
Read 2 more answers
Let x denote the lifetime of a mcchine component with an exponential distribution. The mean time for the component failure is 25
aliina [53]

Answer:

0.1353 = 13.53% probability that the lifetime exceeds the mean time by more than 1 standard deviations

Step-by-step explanation:

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

f(x) = \mu e^{-\mu x}

In which \mu = \frac{1}{m} is the decay parameter.

The probability that x is lower or equal to a is given by:

P(X \leq x) = \int\limits^a_0 {f(x)} \, dx

Which has the following solution:

P(X \leq x) = 1 - e^{-\mu x}

The probability of finding a value higher than x is:

P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}

The mean time for the component failure is 2500 hours.

This means that m = \frac{2500}, \mu = \frac{1}{2500} = 0.0004

What is the probability that the lifetime exceeds the mean time by more than 1 standard deviations?

The standard deviation of the exponential distribution is the same as the mean, so this is P(X > 5000).

P(X > x) = e^{-0.0004*5000} = 0.1353

0.1353 = 13.53% probability that the lifetime exceeds the mean time by more than 1 standard deviations

4 0
3 years ago
Other questions:
  • How do you find the slope on a graph
    7·1 answer
  • Mandy is on a bus that is traveling at a constant speed of 60 miles per hour. How far will she travel is 3 1/2 hours?
    5·2 answers
  • Solve for x: ln(3x)^2=16.
    8·1 answer
  • Distance vs time Scatter plot
    9·1 answer
  • What is the surface area of the squared pyramid?
    5·1 answer
  • Make sure to show all steps it took to answer this question
    15·2 answers
  • Help me please.What is the answer
    5·1 answer
  • A basketball costs $15.00. If the sales tax is 6%, which equation can be used to find the amount of tax?
    9·1 answer
  • If carpet costs $11 a square yard including padding and installation, what would it
    14·2 answers
  • Which expression is equivalent to 80 ?<br> O 42.5<br> o<br> 24.5<br> O v2.2.5<br> 0122. 122. 152
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!