Answer: 0
Step-by-step explanation:
In this case we are dealing with the pythagorean theorm involving right angled triangles. This theorm states that a^2 + b^2 = c^2 which means the square of the hypotenuse (side c, opposite the right angle) is equal to the square of the remaining two sides.
In this case we will say that a = 3963 miles which is the radius of the earth. c is equal to the radius of the earth plus the additional altitude of the space station which is 250 miles; therefore, c = 4213 miles. We must now solve for the value b which is equal to how far an astronaut can see to the horizon.
(3963)^2 + b^2 = (4213)^2
b^2 = 2,044,000
b = 1430 miles.
The astronaut can see 1430 miles to the horizon.
Answer:
The answer to your question is
Step-by-step explanation:
Data
Foci (-2, 2) (4, 2)
Major axis = 10
Process
1.- Plot the foci to determine if the ellipse is vertical or horizontal. See the picture below.
From the graph we conclude that it is a horizontal ellipse.
2.- Determine the foci axis (distance between the foci)
2c = 6
c = 6/2
c = 3
3.- Determine a
2a = 10
a = 10/2
a = 5
4.- Determine b using the Pythagorean theorem
a² = b² + c²
-Solve for b
b² = a² - c²
b² = 5² - 3²
b² = 25 - 9
b² = 16
b = 4
5.- Find the center (1, 2) From the graph, it is in the middle of the foci
6.- Find the equation of the ellipse

Answer:
h(3)=n(h_3)×3that is the answer
Answer:
f(x) = -x + 3
Step-by-step explanation:
To flip it over the y-axis, just make all your x-values negative.
y(x) = x + 3
f(x) = y(-x) = (-x) + 3 = -x + 3