Are you telling us? This doesn't sound like a question.
The volume generated by rotating the given region
about OC is
<h3>
Washer method</h3>
Because the given region (
) has a look like a washer, we will apply the washer method to find the volume generated by rotating the given region about the specific line.
solution
We first find the value of x and y









![v= \pi \int\limits^2_o= [\frac{y^{2} }{4} - \frac{y^{8} }{2^{8} }} ] dy](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5Cint%5Climits%5E2_o%3D%20%5B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20-%20%5Cfrac%7By%5E%7B8%7D%20%7D%7B2%5E%7B8%7D%20%7D%7D%20%20%5D%20dy)
![v= \pi [\int\limits^2_o {\frac{y^{2} }{4} } \, dy - \int\limits^2_o {\frac{y}{2^{8} } ^{8} } \, dy ]](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5B%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20%7D%20%5C%2C%20dy%20-%20%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%7D%7B2%5E%7B8%7D%20%7D%20%5E%7B8%7D%20%7D%20%5C%2C%20dy%20%5D)
![v=\pi [\frac{1}{4} \frac{y^{3} }{3} \int\limits^2_0 - \frac{1}{2^{8} } \frac{y^{g} }{g} \int\limits^2_o\\v= \pi [\frac{1}{12} (2^{3} -0)-\frac{1}{2^{8}*9 } (2^{g} -0)]\\v= \pi [\frac{2}{3} -\frac{2}{g} ]\\v= \frac{4}{g} \pi](https://tex.z-dn.net/?f=v%3D%5Cpi%20%5B%5Cfrac%7B1%7D%7B4%7D%20%5Cfrac%7By%5E%7B3%7D%20%7D%7B3%7D%20%20%5Cint%5Climits%5E2_0%20-%20%5Cfrac%7B1%7D%7B2%5E%7B8%7D%20%7D%20%20%5Cfrac%7By%5E%7Bg%7D%20%7D%7Bg%7D%20%5Cint%5Climits%5E2_o%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B1%7D%7B12%7D%20%282%5E%7B3%7D%20-0%29-%5Cfrac%7B1%7D%7B2%5E%7B8%7D%2A9%20%7D%20%282%5E%7Bg%7D%20-0%29%5D%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B2%7D%7B3%7D%20-%5Cfrac%7B2%7D%7Bg%7D%20%5D%5C%5Cv%3D%20%5Cfrac%7B4%7D%7Bg%7D%20%5Cpi)
A similar question about finding the volume generated by a given region is answered here: brainly.com/question/3455095
Answer:
x^2+4x
Step-by-step explanation:
Use the Foil formula
Answer:
F(x)= 4x-1 I think so hope it will help you
Answer:
No, because as the x-values are increasing by a constant amount, the y-values are not being multiplied by a constant amount.
Step-by-step explanation:
We have a set of ordered pairs of the form (x, y)
If a function is exponential then the ratio between the consecutive values of y, is always equal to a constant.
This means that:
\frac{y_2}{y_1}=\frac{y_3}{y_2}=\frac{y_4}{y_3}=by1y2=y2y3=y3y4=b
This is: y_2=by_1y2=by1
Now we have this set of points {(-1, -5), (0, -3), (1, -1), (2, 1)}
Observe that:
\begin{gathered}\frac{y_2}{y_1}=\frac{-3}{-5}=\frac{3}{5}\\\\\frac{y_3}{y_2}=\frac{-1}{-3}=\frac{1}{3}\\\\\frac{3}{5}\neq \frac{1}{3}\end{gathered}y1y2=−5−3=53y2y3=−3−1=3153=31
Then the values of y are not multiplied by a constant amount "b"