The answer is 18000 kgm/s
Momentum is mass times velocity so just do 750•24.
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Answer:
The following explanatory section gives an explanation of this question.
Explanation:
- This means that perhaps the bubble moves more than a certain duration throughout the calibration breath meter offers the rate as well as oxygenation consumed inside this cell.
- Inside that respirometer, oscillation of something like the bubble gave a technique of multiplying the quantity of oxygenation that is used by the seedlings mostly through cell membrane breathing.