Answer:
a = 2.5 [m/s²]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 25 [m/s]
Vo = initial velocity = 0 (star from the rest)
a = acceleration [m/s²]
t = time = 10 [s]
25 = 0 + (a*10)
a = 25/10
a = 2.5 [m/s²]
Answer
18,000
Why?
KE=(1/2)(2000)(18)
Ke=18,000
Answer: 109.4 mm
Explanation: <u>Distance</u> is a scalar quantity and it is the measure of how much path there are between two locations. It can be calculated as the product of velocity and time: d = vt
The separation between the two steamrollers is 105 mm or 0.105 m. They collide to each other at the middle of the separation:
location of collision =
= 0.0525 m
To reach that point, both steamrollers will have spent



t = 0.04375 s
The fly is travelling with speed of 2.5 m/s. So, at t = 0.04375 s:
d = 2.5*0.04375
d = 0.109375 m
Until it is crushed, the fly will have traveled 109.4 mm.
Answer:
option E
Explanation:
The correct answer is option E
Writing the relation between wavelength and frequency

f is the frequency
v is the velocity of wave
λ is the wavelength
From the above expression we can clearly see that frequency is inversely proportional to wavelength.
When the distance between the two successive crest is decreased then wave length of the wave also decrease.
If wavelength of the wave decreases then frequency of the wave increase.
hence, we can say that both wavelength and the frequency changes.
Answer:
The answer is convection.
Explanation:
There are three types of heat transfer: conduction, convection and radiation.
- Conduction occurs when two objects touch each other and transfer heat.
- Convection occurs when an object heats its surrounding fluid (like air, or water) and, since the hot fluids are less dense than the cold ones, they go up. So convection is a type of heat transfer that usually goes from down to up.
- Radiation occurs when objects emanate heat in the form of electromagnetic waves that propagates in all directions.
So in this case, when the marshmallow is above the fire, it is exposed to convection, which does not occur when it is on the side of the fire.