CFCs, carbon dioxide, green house gases and it's effects are responsible for the hole in ozone layer.
Answer:
0.435atm
Explanation:
cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains air with a volume of 0.185 m3 at a pressure of 0.740 atm. The piston is slowly pulled out until the volume of the gas is increased to 0.315 m3. If the temperature remains constant, what is the final value of the pressure?
Given
Initial pressure P1= 0.740atm
Initial volume V1= 0.185 m3
Final pressure P2= ?
Final volume V2= 0.315 m3
At constant temperature, the pressure of a syste is inversely proportional to volume, by Boyles law then
P1V1=P2V2
P2=P1V1/V2
=(0.185*0.740)/0.315
0.1369/0.315
= 0.435atm
Therefore, final pressure is 0.435atm
Answer:
R = 1,746 Ω
Explanation:
The power dissipated in the circuit is
P = V I = V² / R
Let's find the current
R = V² / P
Let's calculate
R = 13²/81
R = 2,096 Ω
This is total resistance
R_total = R + r
R = R_total - r
R = 2,096 -0,350
R = 1,746 Ω