1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
11

Simplify (3a^4b^3)^3

Mathematics
2 answers:
tatiyna3 years ago
7 0

Answer:

Step-by-step explanation:

(3a^4b^3)^3

=3^3a^4*3b^3*3

=27a^12b^9

AleksandrR [38]3 years ago
5 0

Answer:

27(a^12)(b^9)

Step-by-step explanation:

Can be reorganized to (3^3)((a^4)^3)((b^3)^3)

27(a^12)(b^9)

You might be interested in
What is the truth value for the following conditional statement? p: true q: false ∼q → ∼p T F → F T T → F F T → T T F → T
arsen [322]

Answer:

False F

Step-by-step explanation:

You are given two statements p and q. For these two statements fill in the logic table:

\begin{array}{ccccccccc}p&|&q&|&\sim p&|&\sim q&|&\sim q\rightarrow \sim p\\T&|&T&|&F&|&F&|&T\\T&|&F&|&F&|&T&|&F\\F&|&T&|&T&|&F&|&T\\F&|&F&|&T&|&T&|&T\end{array}

So, when p is true and q is false, statement \sim q\rightarrow \sim p is false.

7 0
3 years ago
I KEE asking so many questions lol I just don’t understand!
Agata [3.3K]

Answer:

Perimeter = 20

Step-by-step explanation:

Perimeter = 9 + 5 + 6

Best Regards!

6 0
3 years ago
For Matthew's lemonade recipe, 4 lemons are required to make 6 cups of lemonade. At what rate are lemons being used in cups of l
Svetlanka [38]

Answer:

1.5 cups of lemonade per 1 lemon

Step-by-step explanation:

find the unit rate:

4/4=1

6/4=1.5

1.5 cups of lemonade per 1 lemon

I hope I read this correctly

3 0
3 years ago
The triangles are similar.
dybincka [34]
36/12=3 Which give you the enlargement of the smaller triangle to the bigger one.

You work out the missing side by putting it into an equation:

3(x-10)=39

Then solve it.

First expand the brackets:

3x-30=39

The rearrange to get x on its own and that will be your answer:

3x=39+30
3x=69
x=69/3
x=23
5 0
4 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Other questions:
  • LCM of 90 , 45, 180
    15·1 answer
  • When factoring to reveal the roots of the equation x² + 2x° - 9x- 18 = 0, which equations
    10·1 answer
  • 4/14 is equivalent to 6/?
    6·1 answer
  • Please help me I beg I really need anyone can help me brainlest answer
    13·1 answer
  • 1.)Y=5x-9
    10·1 answer
  • Three roots of a polynomial equation with real coefficients are 3, 5 – 3i, and −3i. Which of the following numbers must also be
    9·1 answer
  • Can someone please help me?!!! And Answer these!! I have to get this done but I can’t do the test right now I don’t have interne
    10·1 answer
  • List four properties preserved by reflection (geometry)
    8·1 answer
  • Mary has $600 in her savings account. She withdrew $120 from an ATM and she used her debit card to buy a present for her mom tha
    7·2 answers
  • Which of the following points would be a solution to this system of liner inequalities?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!