Assuming you meant y=3/4x-3, the answer is y=-4/3x-3
Answer:
<em><u>In analytic geometry, using the common convention that the horizontal axis represents a variable x and the vertical axis represents a variable y, a y-intercept or vertical intercept is a point where the graph of a function or relation intersects the y-axis of the coordinate system.[1] As such, these points satisfy x = 0.</u></em>
The third option is ordered least to greatest
Answer:
Assuming you have the lengths in inches.
Do this: (length in inches * 10) x (length in inches * 10)
Step-by-step explanation:
There's information missing from this question. "The football field is 100 yards long and yards wide", but to find out the area of a rectangle you just need to times the two numbers together.
I assume you have a picture with the lengths in inches on, if you can see how many inches are on the scale drawing, times the inches by 10 for the length in yards for each side. Then times the two lengths (in yards) together for the area.
:)
9514 1404 393
Answer:
-3 ≤ x ≤ 19/3
Step-by-step explanation:
This inequality can be resolved to a compound inequality:
-7 ≤ (3x -5)/2 ≤ 7
Multiply all parts by 2.
-14 ≤ 3x -5 ≤ 14
Add 5 to all parts.
-9 ≤ 3x ≤ 19
Divide all parts by 3.
-3 ≤ x ≤ 19/3
_____
<em>Additional comment</em>
If you subtract 7 from both sides of the given inequality, it becomes ...
|(3x -5)/2| -7 ≤ 0
Then you're looking for the values of x that bound the region where the graph is below the x-axis. Those are shown in the attachment. For graphing purposes, I find this comparison to zero works well.
__
For an algebraic solution, I like the compound inequality method shown above. That only works well when the inequality is of the form ...
|f(x)| < (some number) . . . . or ≤
If the inequality symbol points away from the absolute value expression, or if the (some number) expression involves the variable, then it is probably better to write the inequality in two parts with appropriate domain specifications:
|f(x)| > g(x) ⇒ f(x) > g(x) for f(x) > 0; or -f(x) > g(x) for f(x) < 0
Any solutions to these inequalities must respect their domains.