Ok, I’ll try to help, but I’d need to see the picture of the positions of the sun, earth, and moon to help you fully.
So, the first thing to note is that gravity is an attractive force, meaning that; something that has mass, call the m1 will “pull toward” another mass, call it m2. The two objects pull on each other, mutually.
If an object has more mass it pull more, and if an object has less mass, it pulls less.
Another thing to note is that distances matter. The closer the objects are to each other, the more pull they’ll “feel”.
So, the ocean tides are the effect of ocean water responding to a gravitational gradient, the moon plays a larger role in creating tides than the sun does. But the sun's gravitational gradient across the earth is significant and it does contribute to tides as well.
So, when the bulge of the ocean caused by the sun’s gravity, partially cancels out the bulge of the ocean caused by the moon gravity. This produces moderate tides known as the neap tides, meaning that high tides are a little lower and low tides are a little higher than average.
I hope that helps.
From the given information, it's not possible to find the mass or the volume of the sample.
Density is their RATIO, but you can't tell if the sample is the size of an ant or a school-bus.
Answer:
Place the north pole of a magnet next to the north pole of another magnet.
Explanation:
Looking at the comments, we can see that the options are:
Place the south pole of a magnet next to the north pole of another magnet.
Place the north pole of a magnet next to the north pole of another magnet.
First, we know that a positively charged particle will repel another positively charged particle.
The same thing happens for magnetic forces (usually we define a magnetic flow from the south pole to the north pole, so we can define the south pole as the "positive" and the north pole as the "negative", but this is only notation and do not really matter), a south pole of a magnet will repel another south pole of a magnet (and the same happens for the north poles)
Then the correct option is:
Place the north pole of a magnet next to the north pole of another magnet.
Answer:
you will be the clouds
and I will be the sky.
you will be the ocean
and I will be the shore.
you will be the trees
and I will be the wind.
whatever we are, you and I will always collide.
There you go! Let me know if it helped.
:)
Both electric and magnetic fields