High Pitch sounds have relativity large frequency and small wavelength
Answer:
1.28 m
Explanation:
Given;
Radius, r = 1.5 cm = 0.015 m
Time, t = 19 s
Average angular speed = 4.5 rad/s
Consider a point when the tape is moving at a constant velocity along the circumference of the circular reel of radius r. The linear velocity v at this point is given by;
v = rω ----(1)
Where
v is the linear velocity of the circular motion
r is the radius of the reel
ω is the the angular velocity.
At a point the tap undergoes a linear motion before passing round the reel of the cassette. The linear velocity v at this point is given by;
v = L/t ----(2)
where;
v is the velocity of the linear motion
L is the length of the tape (distance covered by the tape)
t is the time taken
Equating equation(1) and equation (2)
L/t = rω
L = rωt
Substituting the given values,
L = 0.015 × 4.5 × 19
L = 1.2825 m
L = 1.28 m
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
<span>Work=effective force x distance = 300cos36. 100 ft.lb.</span>
The answer is the Milky Way .
Answer:
28.6260196842 m
Explanation:
Let h be the height of the building
t = Time taken by the watermelon to fall to the ground
Time taken to hear the sound is 2.5 seconds
Time taken by the sound to travel the height of the cliff = 2.5-t
Speed of sound in air = 340 m/s
For the watermelon falling

For the sound
Distance = Speed × Time

Here, distance traveled by the stone and sound is equal


The time taken to fall down is 2.4158 seconds

Height of the buidling is 28.6260196842 m