Answer:
The induced current and the power dissipated through the resistor are 0.5 mA and
.
Explanation:
Given that,
Distance = 1.0 m
Resistance = 3.0 Ω
Speed = 35 m/s
Angle = 53°
Magnetic field 
(a). We need to calculate the induced emf
Using formula of emf

Where, B = magnetic field
l = length
v = velocity
Put the value into the formula


We need to calculate the induced current


Put the value into the formula


(b). We need to calculate the power dissipated through the resistor
Using formula of power

Put the value into the formula


Hence, The induced current and the power dissipated through the resistor are 0.5 mA and
.
Answer:
Explanation: so how many minutes are in an hour 60 right, and the bus travels 10km in 7 minutes right so use math the bus travels 14km in 10 minutes so the bus travels 98km in an hour
Answer:
a The kinetic energy is 
b The height of the center of mass above that position is
Explanation:
From the question we are told that
The length of the rod is 
The mass of the rod
The angular speed at the lowest point is 
Generally moment of inertia of the rod about an axis that passes through its one end is
Substituting values


Generally the kinetic energy rod is mathematically represented as



From the law of conservation of energy
The kinetic energy of the rod during motion = The potential energy of the rod at the highest point
Therefore



Answer:
The acceleration of the object is
Explanation:
Given:
Initial velocity of object
= 200 feet/second
Final velocity of object
= 50 feet/second
Time of travel = 5 seconds
To calculate acceleration of the object we will find the rate of change of velocity with respect to time.
So, acceleration
is given by:

where
represents final velocity,
represents initial velocity and
is time of travel.
Plugging in values to evaluate acceleration.



The acceleration of the object is
(Answer). The negative sign shows the object is slowing down.
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m