Problem 1
With limits, you are looking to see what happens when x gets closer to some value. For example, as x gets closer to x = 2 (from the left and right side), then y is getting closer and closer to y = 1/2. Therefore the limiting value is 1/2
Another example: as x gets closer to x = 4 from the right hand side, the y value gets closer to y = 4. This y value is different if you approach x = 0 from the left side (y would approach y = 1/2)
Use examples like this and you'll get the results you see in "figure 1"
For any function values, you'll look for actual points on the graph. A point does not exist if there is an open circle. There is an open circle at x = 2 for instance, so that's why f(2) = UND. On the other hand, f(0) is defined and it is equal to 4 as the point (0,4) is on the function curve.
=======================================================
Problem 2
This is basically an extension of problem 1. The same idea applies. See "figure 2" (in the attached images) for the answers.
He lost $30 bc
Guy stole $100
Guy gave back $70
Owner gives hue $30 !
If that makes any sense ♀️
First translate the English phrase "Four times the sum of a number and 15 is at least 120" into a mathematical inequality.
"Four times..." means we're multiplying something by 4.
"... the sum of a number and 15..." means we're adding an unknown and 15 and then multiplying the result by 4.
"... is at least 120" means when we substitute the unknown for a value, in order for that value to be in the solution set, it can only be less than or equal to 120.
So, the resulting inequality is 4(x + 15) ≤ 120.
Simplify the inequality.
4(x + 15) ≤ 120
4x + 60 ≤ 120 <-- Using the distributive property
4x ≤ 60 <-- Subtract both sides by 60
x ≤ 15 <-- Divide both sides by 4
Now that we have the inequality in a simplified form, we can easily see that in order to be in the solution set, the variable x can be no bigger than 15.
In interval notation it would look something like this:
[15, ∞)
In set builder notation it would look something like this:
{x | x ∈ R, x ≤ 15}
It is read as "the set of all x, such that x is a member of the real numbers and x is less than or equal to 15".
Answer:
Part a) 
Part b) 
Step-by-step explanation:
Part a) Write an equation for T (d)
Let
d ----> the number of days
T ---> the time in minutes of the treadmill
we know that
The linear equation in slope intercept form is equal to

where
m is the slope or unit rate
b is the y-intercept or initial value
In this problem we have
The slope or unit rate is

The y-intercept or initial value is

substitute

Part b) Find T (6), the minutes he will spend on the treadmill on day 6
For d=6
substitute in the equation and solve for T

