Answer:
B I believe im sorry if it's not right
Answer:
The water in the hydrate (referred to as "water of hydration") can be removed by heating the hydrate. When all hydrating water is removed, the material is said to be anhydrous and is referred to as an anhydrate.
Explanation:
Answer:
Row 1
![[H^+]=1.8\times 10^{-6}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.8%5Ctimes%2010%5E%7B-6%7DM)
![pH=-\log[H^+]=-\log[1.8\times 10^{-6}]=5.7](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D%3D-%5Clog%5B1.8%5Ctimes%2010%5E%7B-6%7D%5D%3D5.7)
pOh=14-pH=14-5.7=8.3
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=0.5\times 10^{-8}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.5%5Ctimes%2010%5E%7B-8%7DM)
Hence, acidic
Row 2
![[OH^-]=3.6\times 10^{-10}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.6%5Ctimes%2010%5E%7B-10%7DM)
![pOH=-\log[OH^-]=-\log[3.6\times 10^{-10}]=9.4](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B3.6%5Ctimes%2010%5E%7B-10%7D%5D%3D9.4)
pH=14-pOH=14 - 9.4 = 4.6
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=2.6\times 10^{-5}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D2.6%5Ctimes%2010%5E%7B-5%7DM)
Hence, acidic
Row 3
pH = 8.15
![[H^+]=0.7\times 10^{-8}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.7%5Ctimes%2010%5E%7B-8%7DM)
pOH=14-pH=14 - 8.15 = 5.8
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=1.5\times 10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.5%5Ctimes%2010%5E%7B-6%7DM)
Hence, basic
Row 4
pOH = 5.70
![[OH^-]=1.8\times 10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.8%5Ctimes%2010%5E%7B-6%7DM)
pH=14-pOH=14 - 5.70 = 8.3
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.5\times 10^{-8}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.5%5Ctimes%2010%5E%7B-8%7DM)
Hence, basic
Answer:

Explanation:
We are asked to find the density of a metal. Density is the mass per unit volume. It is calculated by dividing the mass by the volume.

The mass of the metal sample is 24.64 grams and the volume is 5.91 milliliters. We can substitute these values into the formula.

Divide.

The mass measurement has 4 significant figures the volume measurement has 3 significant figures. Our answer for density must match the least number of significant figures, which is 3.
For the number we calculated, that is the hundredth place. The 9 in the thousandth place tells us to round the 6 up to a 7.

The density of this metal is approximately <u>4.17 grams per milliliter.</u>
Answer:
f = 0.83 ×10¹⁵s⁻¹
Explanation:
Given data:
Energy of ray = 5.5 ×10⁻¹⁹ J
Frequency = ?
Solution:
Formula:
E = hf
f = E/h
J = Kg . m².s⁻²
f = 5.5 ×10⁻¹⁹ Kg . m².s⁻² / 6.63 ×10⁻³⁴ m²Kg/s
f = 0.83 ×10¹⁵s⁻¹