Ok, after doing an immense amount of research I came up with the most logical answer.
A. Is indicated by a negative enthrall sign.
Reasoning: an endothermic reaction is ice melting and the energy being more than its surroundings. Not specified to ice but as an example, ice is endothermic. That puts d and b out of the running leaving you left with a and c.
When I searched up enthalpy, it said “When a substance changes at constant pressure, enthalpy tells how much heat and work was added or removed from the substance.” Which is similar to c, right? Yeah, meaning both a and c are similar in that aspect.
The reason I decided to go with a is because heat is NOT released into the surrounding, exothermic reactions release energy and heat into the surrounding.
102 grams.
Equation:
Quantify of heat = mass x specific heat x difference in temperature
We have: quantity of heat : 2300J
specific heat: .449 J/g
difference in t: 80 - 30 = 50
Solve for mass: 2300 = mass x 0.449 x 50
mass = 102.449
2 sig-figs --> 102 grams
Explanation:
It's (D), nuclear fission................
Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.
Answer:
heat flow
Explanation:
heat flow moves to a higher temperature to a lower temperature