You can solve for the velocity and position functions by integrating using the fundamental theorem of calculus:
<em>a(t)</em> = 40 ft/s²
<em>v(t)</em> = <em>v </em>(0) + ∫₀ᵗ <em>a(u)</em> d<em>u</em>
<em>v(t)</em> = -20 ft/s + ∫₀ᵗ (40 ft/s²) d<em>u</em>
<em>v(t)</em> = -20 ft/s + (40 ft/s²) <em>t</em>
<em />
<em>s(t)</em> = <em>s </em>(0) + ∫₀ᵗ <em>v(u)</em> d<em>u</em>
<em>s(t)</em> = 10 ft + ∫₀ᵗ (-20 ft/s + (40 ft/s²) <em>u</em> ) d<em>u</em>
<em>s(t)</em> = 10 ft + (-20 ft/s) <em>t</em> + 1/2 (40 ft/s²) <em>t</em> ²
<em>s(t)</em> = 10 ft - (20 ft/s) <em>t</em> + (20 ft/s²) <em>t</em> ²
Answer:
4.
Step-by-step explanation:
2 to the second power = 2^2.
2^2 means 2*2 = 4.
The 2 in ^2 is called the 'exponent' .
Note 3^3 = 3*3*3
and 5^5 = 5*5*5*5*5.
the solution is in the above picture.
Paralell means has same lsope
y=mx+b
m=slope
given
y=3x-5
slope=3
y=3x+b
find b
(3,1)
x=3
y=1
sub and find b
1=3(3)+b
1=9+b
minus 9 both sides
-8=b
y=3x-8 is equation