Answer:
Step-by-step explanation:
First we are going to find the common denominator of both fractions. To do that, we are going to multiply their denominators:
![(1+sin \alpha )(1-sin \alpha )=1-sin^2 \alpha](https://tex.z-dn.net/?f=%281%2Bsin%20%5Calpha%20%29%281-sin%20%5Calpha%20%29%3D1-sin%5E2%20%5Calpha%20)
Now we can rewrite our expression using the common denominator:
![\frac{1-sin \alpha }{1-sin^2 \alpha } + \frac{1+sin \alpha }{1-sin^2 \alpha} = \frac{2}{1-sin^2 \alpha}](https://tex.z-dn.net/?f=%5Cfrac%7B1-sin%20%5Calpha%20%7D%7B1-sin%5E2%20%5Calpha%20%7D%20%2B%20%5Cfrac%7B1%2Bsin%20%5Calpha%20%7D%7B1-sin%5E2%20%5Calpha%7D%20%3D%20%5Cfrac%7B2%7D%7B1-sin%5E2%20%5Calpha%7D%20)
Finally, we can use the trig identities:
![1-sin^2 \alpha =cos^2 \alpha](https://tex.z-dn.net/?f=1-sin%5E2%20%5Calpha%20%3Dcos%5E2%20%5Calpha%20)
and
![sec \alpha = \frac{1}{cos \alpha }](https://tex.z-dn.net/?f=sec%20%5Calpha%20%3D%20%5Cfrac%7B1%7D%7Bcos%20%5Calpha%20%7D%20)
to simplify our trig expression:
We can conclude that the correct answer is the fourth one.
a rectangle has two even size the other two even sides a square has four even sides and square is a rectangle but a rectangle isn't a square
Step-by-step explanation:
If you need any explanation, we can communicate normally