Both ehhevshahahbsbdvhshs
If the temperature of a liquid-vapor system at equilibrium increases, it will shift towards the vapor phase, assuming that the pressure remains equal. The concentration of vapor will also increase relative to the concentration of liquid in the system. Thus, the new equilibrium condition will have more vapor than liquid.
First let us calculate for the molar mass of ibuprofen:
Molar mass = 13 * 12 g/mol + 18 * 1 g/mol + 2 * 16 g/mol
Molar mass = 206 g/mol = 206 mg / mmol
Calculating for the number of moles:
moles = 200 mg / (206 mg / mmol)
moles = 0.971 mmol = 9.71 x 10^-4 moles
Using the Avogadros number, we calculate the number of
molecules of ibuprofen:
Molecules = 9.71 x 10^-4 moles * (6.022 x 10^23 molecules
/ moles)
<span>Molecules = 5.85 x 10^20 molecules</span>
Answer:
400.197mmHg
Explanation:
P1V1 / T1 = P2V2 / T2
Where P1=524 mm Hg V1 =275 ml T1 = 35°C +273 = 308k
V2= 325-ml T2= 5°C+273 = 278k , P2= ?
Substituting the values into the formula.
524 mm Hg ×275 ml /308k = P2×325-ml/278k
Cross multiply
524 mm Hg ×275 ml×278k=308k×P2×325-ml
40059800= 100100×P2
P2 = 40059800/100100
P2= 400.197mmHg
Hence, the second pressure will be 400.197mmHg
Answer:
d
Explanation:
e works, a and b one of them is stronger but it works d is the only logical answer