Given:
The graph of a downward parabola.
To find:
The domain and range of the graph.
Solution:
Domain is the set of x-values or input values and range is the set of y-values or output values.
The graph represents a downward parabola and domain of a downward parabola is always the set of real numbers because they are defined for all real values of x.
Domain = R
Domain = (-∞,∞)
The maximum point of a downward parabola is the vertex. The range of the downward parabola is always the set of all real number which are less than or equal to the y-coordinate of the vertex.
From the graph it is clear that the vertex of the parabola is at point (5,-4). So, value of function cannot be greater than -4.
Range = All real numbers less than or equal to -4.
Range = (-∞,-4]
Therefore, the domain of the graph is (-∞,∞) and the range of the graph is (-∞,-4].
Answer:
24
Step-by-step explanation:
2/5 = 40%
40% of 60 = 24
If the wheel is $650=8% tax, the tax would be $52 we get that by multiplying 650*8% then add 650+52 and we get 702. so together the cheese wheel is $702
Answer:
one time
Step-by-step explanation:
because after that you would subtract by 20
Answer:
a) 
b) 
c) 
With a frequency of 4
d) 
<u>e)</u>
And we can find the limits without any outliers using two deviations from the mean and we got:

And for this case we have two values above the upper limit so then we can conclude that 1500 and 3000 are potential outliers for this case
Step-by-step explanation:
We have the following data set given:
49 70 70 70 75 75 85 95 100 125 150 150 175 184 225 225 275 350 400 450 450 450 450 1500 3000
Part a
The mean can be calculated with this formula:

Replacing we got:

Part b
Since the sample size is n =25 we can calculate the median from the dataset ordered on increasing way. And for this case the median would be the value in the 13th position and we got:

Part c
The mode is the most repeated value in the sample and for this case is:

With a frequency of 4
Part d
The midrange for this case is defined as:

Part e
For this case we can calculate the deviation given by:

And replacing we got:

And we can find the limits without any outliers using two deviations from the mean and we got:

And for this case we have two values above the upper limit so then we can conclude that 1500 and 3000 are potential outliers for this case