.83
25 bus riding sophomores / 30 sophomores
Let

and

be the sides of the rectangle. The perimeter is given to be 500m, so we are maximizing the area function

subject to the constraint

.
From the constraint, we find

so we can write the area function independently of

:

Differentiating and setting equal to zero, we find one critical point:

which means

, so in fact the largest area is achieved with a square fence that surrounds an area of

.
Rounding it to the tens place so your answer for 12mm is going to be 10
Answer:
y = (28x^3 +37x^2 +19x +60)/15
Step-by-step explanation:
Many graphing calculators and spreadsheets can do this from the list of points.
Answer:
x² - 2x - 8
Step-by-step explanation:
The notation (f·g)(x) means to multiply the two functions. Use the distributive property to simplify.
(f·g)(x) = (x+2)(x-4) = x² + 2x - 4x - 8 = x² - 2x - 8
Give me brainliest please