A.) For n independent variates with the same
distribution, the standard deviation of their mean is the standard
deviation of an individual divided by the square root of the sample
size: i.e. s.d. (mean) = s.d. / sqrt(n)
Therefore, the standard deviation of of the average fill volume of 100 cans is given by 0.5 / sqrt(100) = 0.5 / 10 = 0.05
b.) In a normal distribution, P(X < x) is given by P(z < (x - mean) / s.d).
Thus, P(X < 12) = P(z < (12 - 12.1) / 0.05) = P(z < -2) = 1 - P(z < 2) = 1 - 0.97725 = 0.02275
c.) Let the required mean fill volume be u, then P(X < 12) = P(z < (12 - u) / 0.05) = 1 - P(z < (u - 12) / 0.05) = 0.005
P(z < (u - 12) / 0.05) = 1 - 0.005 = 0.995 = P(z < 2.575)
(u - 12) / 0.05 = 2.575
u - 12 = 2.575 x 0.05 = 0.12875
u = 12 + 0.12875 = 12.12875
Therefore, the mean fill volume should be 12.12875 so that the probability that the average of 100 cans is below 12 fluid ounces be 0.005.
d.) Let the required standard deviation of fill volume be s, then P(X < 12) = P(z <
(12 - 12.1) / s) = 1 - P(z < 0.1 / s) = 0.005
P(z < 0.1 / s) = 1 - 0.005 = 0.995 = P(z < 2.575)
0.1 / s = 2.575
s = 0.1 / 2.575 = 0.0388
Therefore, the standard deviation of fill volume should be 0.0388 so that the probability that the average of 100 cans is below 12 fluid ounces be 0.005.
e.) Let the required number of cans be n, then P(X < 12) = P(z <
(12 - 12.1) / (0.5/sqrt(n))) = 1 - P(z < (12.1 - 12) / (0.5/sqrt(n))) = 0.01
P(z < 0.1 / (0.5/sqrt(n))) = 1 - 0.01 = 0.99 = P(z < 2.327)
0.1 / (0.5/sqrt(n)) = 2.327
0.5/sqrt(n) = 0.1 / 2.327 = 0.0430
sqrt(n) = 0.5/0.0430 = 11.635
n = 11.635^2 = 135.37
Therefore, the number of cans that need to be measured such that the average fill volume is less than 12 fluid ounces be 0.01
Answer:
the answer is 25
Step-by-step explanation:
because (4x-25) is equal to 75
so put the equation together and solve for x
4x-25=75
+25= 75+25
4x=100
x=25
Answer
yes it is correct
Step-by-step explanation:
Answer:
The next three terms in this sequence will be, -96, 192, and -384.
Hope this helped have a blessed day
Step-by-step explanation: