Rhythms that occur faster and slower than the beat are b.<span>not synchronized with the time signature. The synchronization follows the same beat or rhythm. If the time signature say is lower than the original, then the rhythm should be faster. Otherwise, the rhythm is slower than the original one.</span>
Answer:
at resonance impedence is equal to resistance and quality factor is dependent on R L AND C all
Explanation:
we know that for series RLC circuit impedance is given by
but we know that at resonance
putting in impedance formula , impedance will become
Z=R so at resonance impedance of series RLC is equal to resistance only
now quality factor of series resonance is given by
so from given expression it is clear that quality factor depends on R L and C
First question: 800J
Second question: 20.4m
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by
where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:
Solving to find the final speed, after throwing the object we have
We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A)
B)
C)
Therefore the final velocity of astronaut is 3.63m/s
Answer:
The water is stored in ice sheets and as snow
Explanation:
Temperature reduces with an increase in altitudes. The standard laps rate is 6.5°C per 1,000 m gained in elevation
At very high elevations, therefore, the air is usually very cold such that when an elevation of 4,500 meters is reached at the equator, it is possible to observe snowfall and the water remain temporarily stored on the surface of the mountain as ice and snow