Answer:
Acceleration = 1.428m/s2
Tension = 102.85N
Explanation:
The detailed solution is attached
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
Explanation:
The machine whose efficiency is 100% is known as perfect machine .This machine is not possible in real life because every machine is affected by the overcoming friction due to which is efficiency become less than hundred percent .
I think you can google this because I really don’t know the answer I’m so sorry
The back-and-forth movement of electrons is called alternating current. Electrons go back and forth, the direction of their path alternates from one direction to another.
the movement of electrons in one direction is called direct current. The electrons move in a direct, single path without changing directions.