Answer:
The reason we can't feel it is that the air within our bodies (in our lungs and stomachs, for example) is exerting the same pressure outwards, so there's no pressure difference and no need for us to exert any effort.
Based on the mass of the bob and the angle between the cord and the vertical, the pendulum length is 0.50m.
The maximum kinetic energy can be found to be 9.42 x 10⁻⁴J.
<h3>What is the pendulum length?</h3>
This can be found as:
= g-force / w²
Solving gives:
= 9.8 / 4.43²
= 0.4998 m
= 0.50 m
<h3>What is the maximum kinetic energy?</h3>
This can be found as:
= 0.5 × m × w² × A²
Maximum kinetic energy is:
= 0.5 × 60 × 10⁻³ × (4.43 × 0.4998 x 0.08 rad)²
= 9.42 x 10⁻⁴J
Find out more on maximum kinetic energy at brainly.com/question/24690095.
Answer:
The density of the sample is 36 g/cm³
Explanation:
m= 972g
l=3cm
V = l³ = 3³ = 27 cm³
density = mass/volume
= 972/27
= 36 g/cm³
Answer:
no ma'am ill help you look
Explanation:
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:
