Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
Acceleration a=3m/s^2
time t= 4.1seconds
Final velocity V= 55km/h
initial velocity U= ?
First convert V to m/s
36km/h=10m/s
55km/h= 55*10/36=15.28m/s
Using the formula V= U+at
U= V-at
U= 15.28-3*4.1=15.28-12.3=2.98m/s
Initial velocity U= 2.98m/s or 10.73km/h (Using the conversion rate 36km/h=10m/s)
<h2>
Answer: higher mean annual rainfall and temperatures. </h2>
Explanation:
Chemical weathering is the set of destructive processes through which rocky materials go trhough. These processes cause changes in the color, texture, composition, firmness and shape of the material.
It should be noted that this happens when the rocks come into contact with atmospheric agents such as oxygen and carbon dioxide.
Another important aspect is that rocks are able to break up more easily thanks to this type of weathering, since <u>the mineral grains within the rock lose adherence and dissolve better under the action of some physical agents</u>, such as <u>humidity (rainfall included) and temperature</u>.
Therefore:
Chemical weathering is greatest under conditions of <u>higher mean annual rainfall and temperatures. </u>