The factors are therefore; (4x – 3), (x + 3) and (x – 1)
<h3>What is a polynomial?</h3>
A polynomial is is a function that contains an algebraic term which is raised to a particular power.
- If it is raised to power 1 it is linear
- If it is raised to power 2 it is quadratic
- If its is raised to power 3 it is cubic
- If it i raised to power 3 it is quartic
Now we have;
4x³ + 5x² – 18x + 9
Thus we can write;
4x³ – 3x² + 8x² – 6x – 12x + 9
Using the factors;
x²(4x – 3) + 2x(4x² – 3) – 3(4x – 3)
Therefore;
(4x – 3)(x² + 2x– 3)
(4x – 3)(x² + 3x – x – 3)
(4x – 3)(x + 3)(x – 1)
The factors are therefore; (4x – 3), (x + 3) and (x – 1)
Learn more about polynomials:brainly.com/question/21334281
#SPJ1
Answer: 10.5
Step-by-step explanation:
Hope it's right!
Answer:
thats a long question my friend
Step-by-step explanation:
(e) Each license has the formABcxyz;whereC6=A; Bandx; y; zare pair-wise distinct. There are 26-2=24 possibilities forcand 10;9 and 8 possibilitiesfor each digitx; yandz;respectively, so that there are 241098 dierentlicense plates satisfying the condition of the question.3:A combination lock requires three selections of numbers, each from 1 through39:Suppose that lock is constructed in such a way that no number can be usedtwice in a row, but the same number may occur both rst and third. How manydierent combinations are possible?Solution.We can choose a combination of the formabcwherea; b; carepair-wise distinct and we get 393837 = 54834 combinations or we can choosea combination of typeabawherea6=b:There are 3938 = 1482 combinations.As two types give two disjoint sets of combinations, by addition principle, thenumber of combinations is 54834 + 1482 = 56316:4:(a) How many integers from 1 to 100;000 contain the digit 6 exactly once?(b) How many integers from 1 to 100;000 contain the digit 6 at least once?(a) How many integers from 1 to 100;000 contain two or more occurrencesof the digit 6?Solutions.(a) We identify the integers from 1 through to 100;000 by astring of length 5:(100,000 is the only string of length 6 but it does not contain6:) Also not that the rst digit could be zero but all of the digit cannot be zeroat the same time. As 6 appear exactly once, one of the following cases hold:a= 6 andb; c; d; e6= 6 and so there are 194possibilities.b= 6 anda; c; d; e6= 6;there are 194possibilities. And so on.There are 5 such possibilities and hence there are 594= 32805 such integers.(b) LetU=f1;2;;100;000g:LetAUbe the integers that DO NOTcontain 6:Every number inShas the formabcdeor 100000;where each digitcan take any value in the setf0;1;2;3;4;5;7;8;9gbut all of the digits cannot bezero since 00000 is not allowed. SojAj= 9<span>5</span>
Answer:
This is always ''interesting'' If you see an absolute value, you always need to deal with when it is zero:
(x-4)=0 ===> x=4,
so that now you have to plot 2 functions!
For x<= 4: what's inside the absolute value (x-4) is negative, right?, then let's make it +, by multiplying by -1:
|x-4| = -(x-4)=4-x
Then:
for x<=4, y = -x+4-7 = -x-3
for x=>4, (x-4) is positive, so no changes:
y= x-4-7 = x-11,
Now plot both lines. Pick up some x that are 4 or less, for y = -x-3, and some points that are 4 or greater, for y=x-11
In fact, only two points are necessary to draw a line, right? So if you want to go full speed, choose:
x=4 and x= 3 for y=-x-3
And just x=5 for y=x-11
The reason is that the absolute value is continuous, so x=4 works for both:
x=4===> y=-4-3 = -7
x==4 ====> y = 4-11=-7!
abs() usually have a cusp int he point where it is =0
Step-by-step explanation: