Answer:
ΔT = 0.02412 s
Explanation:
We will simply calculate the time for both the waves to travel through rail distance.
FOR THE TRAVELING THROUGH RAIL:

FOR THE WAVE TRAVELING THROUGH AIR:

The separation in time between two pulses can now be given as follows:

<u>ΔT = 0.02412 s</u>
Answer:
4 J
Explanation:
From the image attached, we can see 2 horizontal forces acting on the box albeit in opposite directions.
Now, the net force will be;
F_net = 3 - 1
F_net = 2 N
To move a distance of 2 metres, kinetic energy is;
K.E = Force × Distance = 2 × 2 = 4 J
Answer:
L = 0.48 H
Explanation:
let L be the inductance, Irms be the rms current, Vrms be the rms voltage and Vmax be the maximum voltage and XL be the be the reactance of the inductor.
Vrms = Vmax/(√2)
= (3.00)/(√2)
= 2.121 V
then:
XL = Vrms/I
= (2.121)/(2.50×10^-3)
= 848.528 V/A
that is L = XL/(2×π×f)
= (848.528)/(2×π×(280))
= 0.482 H
Therefore, the inductance needed to kepp the rms current less than 2.50mA is 0.482 H.
Most likely it will reflect off the surface and create a fire
Explanation:
The fluctuating sound heard when two objects vibrate with different frequencies is called beats. It is given that guitar string produces 3 beats/s when sounded with a 352 Hz tuning fork and 8 beats/s when sounded with a 357 Hz tuning fork.
It is assumed to find the vibrational frequency of the string.
For 3 beats/s, beat frequency can be :
352 - 3 or 352 + 3 = 349 Hz or 355 Hz
For 8 beats/s, beat frequency can be :
357 - 8 or 357 + 8 = 349 Hz or 365 Hz
It means that the vibrational frequency is 349 Hz.