Answer:
Thermopile is an electronic device that converts thermal energy into electrical energy.
A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
Answer: 0.43 V
Explanation:
L = [μ(0) * N² * A] / l
Where
L = Inductance of the solenoid
N = the number of turns in the solenoid
A = cross sectional area of the solenoid
l = length of the solenoid
7.3*10^-3 = [4π*10^-7 * 450² * A] / 0.24
1.752*10^-3 = 4π*10^-7 * 202500 * A
1.752*10^-3 = 0.255 * A
A = 1.752*10^-3 / 0.255
A = 0.00687 m²
A = 6.87*10^-3 m²
emf = -N(ΔΦ/Δt).........1
L = N(ΔΦ/ΔI) so that,
N*ΔΦ = ΔI*L
Substituting this in eqn 1, we have
emf = - ΔI*L / Δt
emf = - [(0 - 3.2) * 7.3*10^-3] / 55*10^-3
emf = 0.0234 / 0.055
emf = 0.43 V
Answer: The statement "The charge cannot be created or destroyed describes the principle of the conservation of charge".
Explanation:
According to the conservation of charge, the charge can neither be created nor destroyed. It can be transferred from one system to another.
In an isolated system, the total electric charge remains constant. The net quantity of electric charge is always conserved in the universe.
Therefore, "the charge cannot be created or destroyed" describes the principle of the conservation of charge.
Answer:
en español por
favor para entender un poco más
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>