Answer:
Basically, solubility increases with temperature. It is the case for most of the solvents. The situation is though different for gases. With increase of the temperature they became less soluble in each other and in water, but more soluble in organic solvents.
<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K
The option which gives the correct mole ratios is H₂S : SO₂ = 2 : 2 and O₂ : H₂O = 3 : 2
<h3 /><h3>What is Mole ratio ?</h3>
It is a conversion factor between compounds in a chemical reaction, that is derived from the coefficients of the compounds in a balanced equation
Molar ratio also known as stoichiometry is the ratio in which the reactants and products are either formed or reacted in the given equation
The balanced equation for given reaction is as follows ;
2H₂S + 3O₂ --> 2SO₂ + 2H₂O
Molar ratio can be determined by the coefficients of the compounds in the balanced reaction
Coefficient is the number in front of the chemical compound and they are as follows
- H₂S - 2
- O₂ - 3
- SO₂ - 2
- H₂O - 2
Therefore, correct option is H₂S : SO₂ = 2 : 2 and O₂ : H₂O = 3 : 2
Learn more about mole ratio here ;
https://brainly.in/question/32799056
#SPJ1
The major classes are monosaccharides, oligosaccharides and polysaccharides.
The types are sugar, starch, and fibersugar.
Hope I helped!!