Answer:
612 K
Explanation:
From the question given above, the following data were obtained:
Initial temperature (T₁) = 306 K
Initial pressure (P₁) = 150 kPa
Final pressure (P₂) = 300 kPa
Volume = 4 L = constant
Final temperature (T₂) =?
Since the volume is constant, the final (i.e the new) temperature of the gas can be obtained as follow:
P₁ / T₁ = P₂ / T₂
150 / 306 = 300 / T₂
Cross multiply
150 × T₂ = 306 × 300
150 × T₂ = 91800
Divide both side by 150
T₂ = 91800 / 150
T₂ = 612 K
Thus, the new temperature of the gas is 612 K
The answer is going to be C) because
A)We know that she put all three boxes in the window and let them sat their for a hour
B)We know that the boxes are the same size
C)She used three different materials,and she wants to measure the warmth of each box. To see which one is the warmest
D)She never said anything about mass
Hopes This Helps:)
Answer:
53.6 g of N₂H₄
Explanation:
The begining is in the reaction:
N₂(g) + 2H₂(g) → N₂H₄(l)
We determine the moles of each reactant:
59.20 g / 28.01 g/mol = 2.11 moles of nitrogen
6.750 g / 2.016 g/mol = 3.35 moles of H₂
1 mol of N₂ react to 2 moles of H₂
Our 2.11 moles of N₂ may react to (2.11 . 2) /1 = 4.22 moles of H₂, but we only have 3.35 moles. The hydrogen is the limiting reactant.
2 moles of H₂ produce at 100 % yield, 1 mol of hydrazine
Then, 3.35 moles, may produce (3.35 . 1)/2 = 1.67 moles of N₂H₄
Let's convert the moles to mass:
1.67 mol . 32.05 g/mol = 53.6 g
Answer:
1. 2.510kJ
2. Q = 1.5 kJ
Explanation:
Hello there!
In this case, according to the given information for this calorimetry problem, we can proceed as follows:
1. Here, we consider the following equivalence statement for converting from calories to joules and from joules to kilojoules:

Then, we perform the conversion as follows:

2. Here, we use the general heat equation:

And we plug in the given mass, specific heat and initial and final temperature to obtain:

Regards!
Answer:
Reacts with salt to from an acid