First of all, when I do all the math on this, I get the coordinates for the max point to be (1/3, 14/27). But anyway, we need to find the derivative to see where those values fall in a table of intervals where the function is increasing or decreasing. The first derivative of the function is

. Set the derivative equal to 0 and factor to find the critical numbers.

, so x = -3 and x = 1/3. We set up a table of intervals using those critical numbers, test a value within each interval, and the resulting sign, positive or negative, tells us where the function is increasing or decreasing. From there we will look at our points to determine which fall into the "decreasing" category. Our intervals will be -∞<x<-3, -3<x<1/3, 1/3<x<∞. In the first interval test -4. f'(-4)=-13; therefore, the function is decreasing on this interval. In the second interval test 0. f'(0)=3; therefore, the function is increasing on this interval. In the third interval test 1. f'(1)=-8; therefore, the function is decreasing on this interval. In order to determine where our points in question fall, look to the x value. The ones that fall into the "decreasing" category are (2, -18), (1, -2), and (-4, -12). The point (-3, -18) is already a min value.
Answer:
C
Step-by-step explanation:
Just re-draw the triangle reflecting the y-axis
Answer:
Kindly check explanation
Step-by-step explanation:
The hypothesis :
H0 : μ1 = μ2
H1 : μ1 > μ2
Given :
x1 = 21.1 ; n1 = 53 ; s1 = 1.1
x2 = 20.7 ; n2 = 46 ; s2 = 1.2
The test statistic :
(x1 - x2) / √[(s1²/n1 + s2²/n2)]
(21.1 - 20.7) / √[(1.1²/53 + 1.2²/46)]
0.4 / 0.2326682
Test statistic = 1.719
The degree of freedom using the conservative method :
Comparing :
Degree of freedom = n - 1
Degree of freedom 1 = 53 - 1 = 52
Degree of freedom 2 = 46 - 1 = 45
Smaller degree of freedom is chosen ;
The Pvalue from Test statistic, using df = 45
Pvalue = 0.0462
Pvalue < α ; Hence, there is significant evidence to conclude that average age of Gorka student is higher than Yaphoa.
Answer:
= -3
Step-by-step explanation:
Find 2 points
(-2, 4) and (1,-5)
We can use the slope formula
m = (y2-y1)/(x2-x1)
= (-5-4)/(1 - -2)
= -9/(1+2)
= -9/3
= -3
Answer:
-19w-3
Step-by-step explanation:
-5w from
-14w-3
-19w-3