1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
2 years ago
8

A spring (oriented horizontally, k = 40 N/m) is attached to the left side wall in a room whose floor is frictionless. A small, d

ense mass (m = 0.5 kg), at rest on the floor, is attached to the right side of the spring. The unelongated spring length is 0.6 m. A person then begins to pull on the system to the right with an applied force of 20 N. This force is applied until the spring elongates by 0.25 m. The force then instantly disappears. Find the speed of the block when the applied force vanishes.
Physics
1 answer:
wolverine [178]2 years ago
6 0

Let <em>x</em> be the distance to which the spring is stretched. Then the net force exerted on the mass is

F(x) = 20\,\mathrm N - \left(40\dfrac{\rm N}{\rm m}\right) x

Then the total work performed on the mass as it's stretched to 0.25 m from equilibrium position is

\displaystyle \int_0^{0.25\,\rm m} \left(20\,\mathrm N - \left(40\dfrac{\rm N}{\rm m}\right)x\right) \,\mathrm dx = 3.75 \,\mathrm J

By the work-energy theorem, the total work done on the mass is equal to its change in kinetic energy. The mass starts at rest and is accelerated by the 20 N force to a speed <em>v</em> such that

W_{\rm total} = \Delta K \\\\ 3.75\,\mathrm J = \dfrac12(0.5\,\mathrm{kg})v^2

Solve for <em>v</em> :

3.75\,\mathrm J = \dfrac12(0.5\,\mathrm{kg}) v^2 \\\\ v^2 = \dfrac{3.75\,\rm J}{0.25\,\rm kg} \\\\ v = \sqrt{\dfrac{3.75\,\rm J}{0.25\,\rm kg}} \approx \boxed{3.87\dfrac{\rm m}{\rm s}}

You might be interested in
Fish are hung on a spring scale to determine their mass (most fishermen feel no obligation to report the mass truthfully). (a) W
bija089 [108]

Answer:

1411.8 N/m

Explanation:

From Hooke's law;

F= Ke

Where

F= force on the spring

K= force constant

e = extension

But e= 8.50 × 10^-2m

F= weight = 12.0 kg × 10 = 120 N

K = F/e = 120/8.50 × 10^-2

K= 1411.8 N/m

7 0
3 years ago
The clouds that occur at the highest altitude are usually
gogolik [260]
The answer is A. Cirrus clouds occur at the highest altitude.
5 0
3 years ago
Read 2 more answers
Ciara is swinging a 0.015 kg ball tied to a string around her head in a flat, horizontal circle. The radius of the circle is 0.7
Sophie [7]

Answer:

B) 1.2 N, toward the center of the circle

Explanation:

The circumference of the circle is:

C = 2πr

C = 2π (0.70 m)

C = 4.40 m

So the velocity of the ball is:

v = C/t

v = 4.40 m / 0.60 s

v = 7.33 m/s

Sum of the forces in the radial direction:

∑F = ma

T = m v² / r

T = (0.015 kg) (7.33 m/s)² / (0.70 m)

T = 1.2 N

The tension force is 1.2 N towards the center of the circle.

4 0
3 years ago
Read 2 more answers
If the speed of a wave is 1500m/sec and its frequency is 200 Hz, what is its wavelength
Ray Of Light [21]

Answer:

The wavelength of wave is 7.5 meter.

Given:

Speed of wave = 1500 \frac{m}{s}

Frequency of wave = 200 Hz

To find:

Wavelength of wave = ?

Formula used:

\lambda = \frac{v}{n}

Where \lambda = wavelength of the wave

v = speed of wave

n = frequency of wave

Solution:

Wavelength of wave is given by,

\lambda = \frac{v}{n}

Where \lambda = wavelength of the wave

v = speed of wave

n = frequency of wave

\lambda = \frac{1500}{200}

\lambda = 7.5 m

The wavelength of wave is 7.5 meter.

4 0
3 years ago
The distance between two stations is 180 km. A train takes 2 hours to cover this distance. The speed of the train in m/sec is...
Mamont248 [21]

Answer:

Av = 25 [m/s]

Explanation:

To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

Av=\frac{distance}{time}

where:

Av = speed [km/h] or [m/s]

distance = 180 [km]

time = 2 [hr]

Therefore the speed is equal to:

Av = \frac{180}{2} \\Av = 90 [km/h]

Now we must convert from kilometers per hour to meters per second

90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]

4 0
3 years ago
Other questions:
  • Most calculators operate on 6.0 V. If, instead of using batteries, you obtain 6.0 V from a transformer plugged into 110-V house
    14·1 answer
  • A sound wave is a
    15·1 answer
  • Particles (mass of each = 0.40 kg) are placed at the 60-cm and 100-cm marks of a meter stick of negligible mass. This rigid body
    14·1 answer
  • Which years had the least sunspot activity?
    13·1 answer
  • Oil having a density of 923 kg/m^3 floats on water. A rectangular block of wood 4.81 cm high and with a density of 961 kg/m^3 fl
    15·1 answer
  • What happens to the diffraction pattern when the number of lines per centimeter of a diffraction grating is increased?
    11·1 answer
  • A solenoid with a ferromagnetic core is called a circuit.
    5·1 answer
  • Which of the following is a service performed by local government?<br> I
    6·1 answer
  • Which term does this explain?
    14·1 answer
  • how does the kinetic energy of particles relate to the temperature of the substance containing those particles, also show the eq
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!