Answer:
The system's kinetic energy changes by 3.6 J
Explanation:
The given parameters are;
The number of cart = 2
The mass of each cart = 0.5kg
The initial length of the spring = 0.50 m
The final length of the spring =T0.3 m
The change in position of the first cart = 0.6 m
The energy given to the first cart = Work done by the force = Force × Displacement
The initial kinetic energy of the two cart moving together = Energy given to the first cart = 6.0 × 0.2 = 1.2J
The kinetic energy given to the two cart combined = The applied force × The total displacement of the two cart as they move together
The kinetic energy given to the two cart combined = 6.0 × (0.6 - 0.2)
The kinetic energy given to the two cart combined = 6.0 × 0.4 = 2.4 J
The total kinetic energy given to the two cart = 1.2 + 2.4 = 3.6 J
The total kinetic energy given to the two cart = 3.6 J
The system's kinetic energy changes by 3.6 J.
Carbon capture is the safest way to capture emission.
<u>Explanation:</u>
Emission of green house gases is one of the most lurking threat above humans. So one of the best ways to reduce emission is to capture the gases like carbon di-oxide or carbon monoxide, nitrous oxide etc. So mostly, the carbon di-oxide gas which is produced as waste is captured using adsorption, absorption, chemical looping etc.
In this method, they are captured from high source points like cement factory etc and then stored in a secluded region. Thus, the adsorption of these gases and then storing them in secluded region is the best option for capturing emission.
Answer:
Aristotle
Explanation:
In ancient Greece, the popular
philosopher Aristotle declared
that all matter was made of only
four elements: fire, air, water
and earth. He also believed that
matter had just four properties:
hot, cold, dry and wet.
Answer:
(a) λ = 4136 nm → infrared
(b) λ = 413.6 nm → visible light
(c) λ = 41.36 nm → ultraviolet
Explanation:
The wavelength of infrared is on the range of 700 nm to 1000000 nm
The wavelength of visible light is between 400 nm and 700 nm
The wavelength of ultraviolet ray on the range of 10 nm to 400 nm
The wavelength of photon is given by;
E = hf
f is the frequency of the wave = c / λ

Where;
c is the speed of light = 3 x 10⁸ m/s
h is Planck's constant = 6.626 x 10⁻³⁴ J/s
(a) 0.3 eV = 0.3 x 1.602 x 10⁻¹⁹ J

λ = 4136 x 10⁻⁹ m
λ = 4136 nm → infrared
(b) 3.0 eV

λ = 413.6 x 10⁻⁹ m
λ = 413.6 nm →visible light
(c) 30 eV

λ = 41.36 x 10⁻⁹ m
λ = 41.36 nm →ultraviolet
Answer:
24445.85 J/s
Explanation:
Area, A = 300 m^2
T = 33° C = 33 + 273 = 306 k
To = 18° C = 18 + 273 = 291 k
emissivity, e = 0.9
Use the Stefan's Boltzman law

Where, e be the energy radiated per unit time, σ be the Stefan's constant, e be the emissivity, T be the temperature of the body and To be the absolute temperature of surroundings.
The value of Stefan's constant, σ = 5.67 x 10^-8 W/m^2k^4
By substituting the values

E = 24445.85 J/s