Answer:
The equation
represents the equation of the parabola with focus (-3, 3) and directrix y = 7.
Step-by-step explanation:
To find the equation of the parabola with focus (-3, 3) and directrix y = 7. We start by assuming a general point on the parabola (x, y).
Using the distance formula
, we find that the distance between (x, y) is

and the distance between (x, y) and the directrix y = 7 is
.
On the parabola, these distances are equal so, we solve for y:

Answer:
It's the first option.
Step-by-step explanation:
It is turned down so the one half is negative (-1/2)
parabola will be in the form of a(x-h)^2 + k. (-h, k) is your vertex, in this case that is (15,25). so in the equation, you will have
-1/2(x-15)^2 + 25. first one.
Hope this helps!