Answer:
The solution to the question above is explained below:
Explanation:
For which solid is the lumped system analysis more likely to be applicable?
<u>Answer</u>
The lumped system analysis is more likely to be applicable for the body cooled naturally.
<em>Question :Why?</em>
<u>Answer</u>
Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in the case of natural convection, then lumped analysis can be applied.
<u>Further explanations:</u>
Heat is a form of energy.
Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.
Heat transfer analysis which utilizes this idealization is known as the lumped system analysis.
The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire body temperature remains essentially uniform at all times during a heat transfer process.
Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.
Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.
By definition we have to:
The electric current is the flow of electric charge due to the movement (usually of electrons) that a material travels.
Some properties are:
1) Electric conduction: The conductive materials have a large amount of free electrons, therefore, the passage of electricity is possible.
2) The current inside a circuit is directly proportional to the voltage and inversely proportional to the resistance of the circuit. This is what is known as ohm's law:

3) The current can be continuous or alternate.
Alternating current is the electric current in which the magnitude and direction vary cyclically.
The direct current is the flow of electric charges that does not change direction with time.
The Two examples of contact forces are:
- frictional force
- Contact force.
The two examples of non contact forces are:
- Gravitational force
- magnetic force.
Contact forces happens due to the contact between two objects
Non Contact forces happens because there is no contact between two objects. There is no attraction.