Air is the answer i do believe
Answer:
.
Explanation:
If the mass of an object is
and the velocity of that object is
, the linear momentum of that object would be
.
Assume that the initial velocity of the mass is positive (
.) However, the direction of the velocity is reversed after the impact. Thus, the sign of the new velocity of the object would be negative- the opposite of that of the initial velocity. The new velocity would be
.
Thus, the change in the velocity of the mass would be:
.
The change in the linear momentum of the mass would be:
.
Thus, the magnitude of the change of the linear momentum would be
.
Answer:
C) Momentum
Explanation:
Refers to an objects mass in motion.
From the planks equation
E=hv
V= c/ wave length
V= 3×10^8/30×10^-9
=1×10^16
E= hv
6.63×10^-34×1×10^16
= 6.63×10^-18
Answer:
93.4 kg
Explanation:
Draw a free body diagram. There are three four forces:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
Applied force F pulling up and to the right, 30.0° above the horizontal.
Sum of forces in the y direction:
∑F = ma
N + F sin 30.0° − mg = 0
N = mg − ½ F
Sum of forces in the x direction:
∑F = ma
F cos 30.0° − Nμ = 0
½√3 F = Nμ
Substitute:
½√3 F = (mg − ½ F) μ
½√3 F / μ = mg − ½ F
½√3 F / μ + ½ F = mg
½F (√3 / μ + 1) = mg
m = F (√3 / μ + 1) / (2g)
Plug in values:
m = 410 N (√3 / 0.500 + 1) / (2 × 9.8 m/s²)
m = 93.4 kg